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Spatial modulation of the incident wave front has become a powerful method for controlling the
diffusive transport of light in disordered media; however, such interference-based control is intrinsically
sensitive to frequency detuning. Here, we show analytically and numerically that certain wave fronts can
exhibit strongly enhanced total transmission or absorption across bandwidths that are orders of magnitude
broader than the spectral correlation width of the speckles. Such broadband enhancement is possible due to
long-range correlations in coherent diffusion, which cause the spectral degrees of freedom to scale as the
square root of the bandwidth rather than the bandwidth itself.
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One exciting development in optics in recent years is the
coherent control of diffusing light in a disordered medium
by shaping input wave fronts using a spatial light modulator
(SLM) [1,2]. Initially, the emphasis was on using wave
front shaping (WFS) to focus light onto a wavelength-scale
region (speckle) behind or within the disordered medium
[3,4], with potential applications for imaging; the optimal
input wave front in this case can be found by a simple
sequential optimization of each pixel on the SLM since
each contributes to the local field at the focal spot
independently. More recently there has been progress in
the more challenging problem of optimizing global proper-
ties of the fields, such as the total transmitted power
through the medium [5–7]. Motivation came from theo-
retical concepts first formulated in the context of meso-
scopic electron transport and localization theory [8–11],
where it was predicted that in a lossless diffusive medium
there would always exist sample-specific “open channels”
that will be transmitted almost perfectly. A closely related
effect is coherently enhanced absorption (CEA) to near
unity via WFS in a disordered medium that, on average,
only absorbs a small fraction of the input light [12,13].
Incomplete control of the input wave fronts reduces the
possible enhancements [14,15], but large enhancements are
still observable under realistic conditions [6,13].
The physical basis of these coherent control effects is

manipulation of the multiple-scattering interference in the
medium. Hence, these effects would seem to be intrinsi-
cally narrow band, limiting their applications in contexts
such as power delivery, communications, and energy
conversion, in which larger bandwidths may be required.
The expected bandwidth is limited by the frequency
correlation scale, δω, which for transmission is the inverse
of the time to diffuse across the thickness L of the medium,
δω ≈D=L2 (D ¼ lc=d is the diffusion constant in d
dimensions, and l is the transport mean free path) [16];
for CEA, δω ≈ c=la, where la is the ballistic absorption

length [12]. For a broadband signal with bandwidth
Δω ≫ δω, a natural hypothesis is that the effective number
of independent frequencies would be Meff ≈ 1þ Δω=δω,
and that the maximal achievable enhancement decreases as
1=Meff . Indeed, this is exactly the behavior found in
experiments maximizing the focal intensity of polychro-
matic light on a single speckle spot using SLMs [17–20].
However, we will show that this is not the case for the total
transmission or absorption due to the long-range spectral
correlations of coherent diffusion [21–24], which are
unimportant for speckle statistics but play a major role
for the global properties [16,22,25–28]. These correlations
dramatically reduce the effective number of independent
degrees of freedom, and instead of the linear scaling, we
find Meff ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω=δω

p
, allowing substantial coherent con-

trol of transmission and absorption over large bandwidths.
For example, for a lossless diffusive sample with a 2%
average transmission, the total transmission can be
enhanced ten times across bandwidth Δω ≈ 60δω; simi-
larly, for a thick diffusive sample with a 3% average
absorption, the total absorption can be enhanced ten times
across Δω ≈ 60δω.
We begin by defining a broadband flux matrix, based on

the monochromatic transmission matrix tðωÞ that relates the
incident field jψ ini to the transmitted field jψ ti ¼ tjψ ini; the
field vectors are written in the basis of N input and output
modes carrying unit flux, and we assume N ≫ 1. The
monochromatic transmitted flux hψ tjψ ti is the expectation
value hψ injt†ðωÞtðωÞjψ ini of the Hermitian matrix t†t; it
follows that the most open channel for monochromatic light
corresponds to the largest eigenvalue of t†t [8–11,29–34].
For polychromatic light, the role of t†t is replaced by

A ¼
Z

dωIðωÞt†ðωÞtðωÞ; ð1Þ

where IðωÞ is the power spectrum of the incident light
normalized to

R
dωIðωÞ ¼ 1. When the transmitted flux is
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measured with a sufficiently long integration time, beating
between different frequencies averages away, and the total
transmission for incident light with spectrum IðωÞ and wave
front jψ ini is simply hψ injAjψ ini. Since A is still Hermitian,
the optimal wave front is again given by the eigenvector with
the largest eigenvalue. A broadband reflection fluxmatrix can
be defined similarly, with r†r replacing t†t. Note that a
monochromatic open channel is generally not an eigenvector
of A, so it will not provide the optimal broadband trans-
mission. As we shall see later in Fig. 2(b), the optimal wave
front has its transmission enhanced rather uniformly across
the target bandwidth, so optimizations aiming for spectral
uniformity (such as maximin) will yield similar results.
In the diffusive regime (λ ≪ l ≪ L, where λ is the

wavelength), each matrix t†ðωÞtðωÞ has a bimodal eigen-
value density pt†tðTÞ ¼ T̄=ð2T ffiffiffiffiffiffiffiffiffiffiffi

1 − T
p Þ where T̄ is the

average transmission [8–11]; the effect of absorption is
considered in Ref. [35]. The distribution has support up to
T ¼ 1, meaningmonochromatic open channels always exist
in the diffusive regime. Since the transmission matrices at
different frequencies do not commute, the eigenvalue
density of the broadband matrix A will be very different.
First, we study the simpler situation when A is given by a

sumofmatrices at discrete frequencies thatwe assume are so
widely separated that correlations between them are negli-
gible. Hence, initiallywe take IðωÞ ¼ P

M
m¼1Wmδðω − ωmÞ

and assume no correlation between the M matrices,
ftðωmÞ≡ tmg. The setup for M ¼ 2 is illustrated in
Fig. 1(a). The eigenvalue density for a sumof large,mutually
uncorrelated, noncommuting random matrices can be
treated by methods developed in free probability theory,
which generalizes the concept of statistical independence to
such matrices [36,37]. Specifically, one can apply an
addition rule [38] to find an implicit equation for the
eigenvalue density of their sum. For the matrix A, define
gAðzÞ as the Stieltjes transform (resolvent) of the eigenvalue

density pA; applying the addition rule, one finds that the
unknown resolvent gA can be obtained from the following
implicit equation (see the details in Ref. [39]):

zþM − 1

gAðzÞ
¼

XM
m¼1

Wmg−1t†mtm
½WmgAðzÞ�; ð2Þ

where the known resolvent gt†mtm is determined from the
bimodal distribution pt†mtm

. We then apply standard root-
finding algorithms to this equation to find gAðzÞ and obtain
the desired eigenvalue density through the inverse Stieltjes
transform pAðTÞ ¼ −limϵ→0þImgAðT þ iϵÞ=π. Results for
the general (M > 2) cases are given in Fig. S1 of the
Supplemental Material [39]. Here, we examine the simpler
M ¼ 2 case for different combinations of weights fW1;
W2g, shown as solid curves in Fig. 1(b) (here, T̄1 ¼ 0.027,
T̄2 ¼ 0.021). TheW1 ¼ 0,W2 ¼ 1 case corresponds to the
monochromatic bimodal distribution. With increasing W1,
the upper edge Tmax decreases as expected; the residual
peaks near T ≈W1 and T ≈W2 can be traced back to the
open channels of the constituent matrices W1t

†
1t1 and

W2t
†
2t2. From the caseW1 ¼ W2 ¼ 1=2, we see that Tmax ≈

0.59 is larger than the ð1þ T̄Þ=2 ≈ 1=2 that one would
obtain from using the monochromatic open channels as the
input wave front.
We perform numerical simulations to validate the ana-

lytic prediction. As illustrated in Fig. 1(a), we simulate a
2D disordered slab of thickness L and width W ¼ 3L in a
waveguide geometry with background refractive index
n0 ¼ 1.5 and slab permittivity ϵðrÞ randomly sampled
between n20 � 0.9 at each grid point. Using the recursive
Green’s function method [48], we obtain the N-by-N
transmission matrix (here N ¼ 647) of the wave equation
½∇2 þ ðω=cÞ2ϵðrÞ�ψðrÞ ¼ 0 for 600 realizations of disor-
der, at two frequencies, ω1 ¼ 390c=L and ω2 ¼ 410c=L
(average transmissions T̄1 ¼ 0.027, T̄2 ¼ 0.021; the varia-
tion of N is negligible), that are much further than δω apart
(here, ω2 − ω1 ≈ 290δω). The resulting eigenvalue den-
sities of the two-frequency matrix A, shown as symbols in
Fig. 1(b), agree perfectly with the analytic prediction with
no fitting parameters.
To see the effect of spectral correlations, we perform

simulations for a broadband input with uniform spectral
weights IðωÞ over bandwidth Δω, centered at ω0 ¼
400c=L (where T̄ ¼ 0.025). The numerically obtained
maximum eigenvalue Tmax of the broadband matrix A is
plotted as blue circles in Fig. 2(a), as a function of Δω=δω,
where δω ¼ 0.069c=L ≈ 21D=L2 is defined as the full
width at half maximum (FWHM) of the transmission
spectrum for the monochromatic open channel [the black
line in Fig. 2(b)]; note that the FWHM of the open channel
transmission coincides with the FWHM of the speckle
intensity correlation (see Fig. S2 in the Supplemental
Material [39]). In Fig. 2(a), we find that at all bandwidths,
Tmax (the blue circles) is much larger than the prediction of

(a)

L

Transmission eigenvalue T

(b)

0 0.2 0.4 0.6 0.8 1

10
–2

10
–1

10
0

P
ro

ba
bi

lit
y 

de
ns

ity
 p

(T
) Simulation

Analytic

0.5 0.4
0.3

0.2
0.1

0.0W  =1

W1

W2

1 2

FIG. 1 (color online). Total transmission through a disordered
slab for incident light with two discrete frequencies. (a) Schematic
setup, with a disordered slab in a multimode waveguide and
polychromatic light incident with a shared wave front. (b) Density
of the polychromatic transmission eigenvalues as calculated
numerically by solving the wave equation (the symbols) and
analytically using Eq. (2) from free probability theory (the lines).
Numbers indicate the intensity weight W1.
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the uncorrelated model when the effective number of
independent frequencies is taken as Meff ¼ 1þ Δω=δω
(the green dashed line), which itself is larger than the
frequency-averaged transmission of the monochromatic
open channel, ð1þ T̄Δω=δωÞ=ð1þ Δω=δωÞ, where one
assumes Meff ¼ 1þ Δω=δω (the orange dot-dashed line).
The transmission spectra of the optimal broadband eigen-
vectors cover the target bandwidth rather uniformly, as
shown in Fig. 2(b) for representative bandwidths.
To account for the spectral correlations, we adopt an

approach similar to the treatment of spatial correlations in
Ref. [6]. We hypothesize that even in the presence of
spectral correlations, the eigenvalue density can still be
described by Eq. (2), but withM replaced by some effective
number of independent frequencies, Meff < 1þ Δω=δω.
We focus on the case where the spectral weight Wm is
uniform, for which Eq. (2) takes a simpler form,

gAðzÞ
Meff

¼ gt†t

�
zþMeff − 1

gAðzÞ
�
: ð3Þ

This coincides with Eq. (3) in Ref. [14], where A is taken to
be ~t†~t, with ~t being a “filtered” matrix that only has a
fraction m1 ¼ 1=Meff of the input channels (the columns)
of the full matrix t, as in experiments where all output lights
are measured but only a fraction of the incident channels is
controlled by the SLM [6]. Given this equivalence, we can
use a property of the filtered matrix [14]

1

Meff
¼ Varð~τÞ

VarðτÞ ; ð4Þ

to determine Meff , where ~τ and τ are the eigenvalues of A
and of t†mtm, respectively. With the broadband eigenvalue
density from simulations [the symbols in Fig. 3(a)], we
confirm that Eq. (4) provides the correct value of Meff that,
through Eq. (3), predicts analytical eigenvalue densities
[the lines in Fig. 3(a)] that agree well with the numerical
data. Meff obtained in this manner scales with the square
root of the bandwidth [the circles in Fig. 3(b)].
The quantity Varð~τÞ can be expressed in terms of the

disorder average of certain products of four transmission
amplitudes tab, and the disorder averages can be carried out
analytically using impurity-averaged perturbation theory
(see the Supplemental Material [39], Figs. S3 and S4). We
find that

1

Meff
¼

ZZ
dω1dω2

Δω2

CðTÞðω1;ω2Þ
CðTÞðω0;ω0Þ

; ð5Þ

where CðTÞðω1;ω2Þ is the mean-normalized spectral corre-
lation hTaðω1ÞTaðω2Þi=hTaðω1ÞihTaðω2Þi − 1 of the total
transmission Ta ¼

P
bjtbaj2, with the brackets denoting the

average over disordered samples; the dependence on
mode index a drops out due to the normalization. In our
system, CðTÞ is well described by [see Fig. S4(a) in the
Supplemental Material [39]]

CðTÞðω1;ω2Þ ¼
1

NT̄

�
2

x
sinhðxÞ − sinðxÞ
coshðxÞ − cosðxÞ − T̄

�
; ð6Þ

where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jω1 − ω2jL2=D

p
. In Eq. (6), the first term is

the long-range correlation that decays as jω1 − ω2j−1=2 (see
Ref. [23]), while the second term is a finite-T̄ correction
[39,49]. Equations (5) and (6) provide an analytic expres-
sion for calculating Meff without free parameters and
perfectly agrees with the Meff obtained from simulations,
as shown in Fig. 3(b). The blue solid line in Fig. 2(a) is
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FIG. 2 (color online). Broadband transmission open channels.
(a) Maximal eigenvalue Tmax of the broadband flux matrix A and
the enhancement η ¼ Tmax=T̄ obtained from numerical simula-
tions (the blue circles) and analytic theory accounting for long-
range correlation (the blue line), showing the highest achievable
frequency-integrated transmission across bandwidth Δω. The
two lines below show the would-be maximal transmission (the
green dashed line) and the transmission of the monochromatic
open channel (the orange dot-dashed line) if there were
1þ Δω=δω uncorrelated frequencies. The black dotted line
indicates the average transmission. (b) Transmission as a function
of frequency when the input wave front is fixed to the optimal
eigenvector with different bandwidths Δω.
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FIG. 3 (color online). (a) Density of the broadband transmission
eigenvalues for various bandwidths, calculated numerically from
simulations (the symbols; bandwidths Δω=δω ¼ 0, 1.0, 2.4, 5.9,
15, 40) and analytically from Eq. (3) with an effective number
Meff of independent frequencies (the lines; Meff ¼ 1.0, 1.3, 1.7,
2.4, 3.9, 6.6). (b)Meff as a function of the square-root bandwidth,
evaluated numerically from Eq. (4) (the symbols) and analytically
from Eqs. (5) and (6) (the line).
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calculated with this analytic expression of Meff , and it
explains the much larger potential transmission enhance-
ment through WFS than was expected from the uncorre-
lated model. Specifically, when Δω falls in the regime
1 ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω=δω

p
≪ 1=T̄, the relevant values of CðTÞ are

dominated by the jω1 − ω2j−1=2 tail in the long-range
contribution, giving rise to the scaling of Meff ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω=δω

p
and a larger Tmax. Note that Eqs. (5) and (6)

show that Meff and Tmax depend only on Δω and T̄.
The presence of weak absorption modifies the long-

range spectral correlation in transmission but does not
change the jω1 − ω2j−1=2 scaling [50,51], so the above-
mentioned effects persist. In fact, in absorbing systems,
long-range correlations in reflection [24] can help the
broadband operation of CEA. Consider a thick diffusive
scattering medium with λ ≪ l ≪

ffiffiffiffiffiffiffiffiffiffiffi
lla=d

p
< L, where la is

the ballistic absorption length. As the thickness L is
larger than the diffusive absorption length La ¼

ffiffiffiffiffiffiffiffiffiffiffi
lla=d

p
,

the transmitted flux is exponentially small, so any light that
is not reflected can be considered absorbed. As l ≪ la,
most incident light is reflected before it propagates far
enough to be absorbed, so the average absorption is
low. However, there exist eigenchannels that can be
nearly completely absorbed at one frequency when the
number of input channels (i.e., the degrees of freedom to be
controlled) is large enough that N2l=la ≫ 1 [12,52].
The minimum reflection (corresponding to the maximum
absorption) is the smallest eigenvalue of r†r, and
in the N → ∞ limit the monochromatic eigenvalues
follow a known bimodal distribution, pr†rðRÞ ¼
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − RÞ=ðaRÞ − 1
p

=½πð1 − RÞ2�, where a≡ l=la ≪ 1

[53,54]. For broadband light with incident spectrum
IðωÞ, we instead look for the eigenvalues of A as defined
in Eq. (1), but with tðωÞ replaced by rðωÞ.
We perform numerical simulations for the geometry

shown in the inset of Fig. 4(a), with thickness L and width
W ¼ 0.43L and with a weak uniform absorption ImðϵÞ ¼
3 × 10−5 in the diffusive medium (corresponding to
a ¼ 2 × 10−4, R̄ ¼ 0.97, and N ¼ 323 near ω0 ¼
1400c=L). Again, we consider broadband incident light
with uniform spectral weights IðωÞ over bandwidth Δω,
and we numerically evaluate the reflection matrices rðωÞ
and the eigenvalues of the broadband flux matrix A. The
maximum absorption, 1 − Rmin, is plotted as blue circles in
Fig. 4(a) as a function of Δω=δω, where δω ¼ 0.14c=L ≈
12c=la is defined as the FWHM of the absorption
spectrum for the monochromatic CEA channel [see
Fig. S5(a) in the Supplemental Material [39]]. Similar to
the broadband lossless transmission, here we find the
maximal absorption to be much larger than the prediction
if one were to ignore long-range spectral correlations (the
green dashed and orange dot-dashed lines).
The density of broadband reflection eigenvalues is well

described by Eq. (3) with t†t replaced by r†r and withMeff

given by Eq. (4) [see Fig. S5(b) in the Supplemental
Material [39]], confirming the hypothesis that one can use
an effective number of independent frequencies to describe
the broadband eigenvalue distribution. Analytically,Meff is
again given by Eq. (5), but with CðTÞ replaced by the
spectral correlation CðRÞðω1;ω2Þ≡ hRaðω1ÞRaðω2Þi=
hRaðω1ÞihRaðω2Þi − 1 of the total reflection Ra ¼P

bjrbaj2, which in our system is well described by [see
Fig. S4(b) in the Supplemental Material [39]]

CðRÞðω1;ω2Þ ¼
1 − R̄

NR̄ð1þ R̄Þ
�

2

1þ y
− ð1 − R̄Þ

�
; ð7Þ

where y ¼ Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ijω1 − ω2jla=c

p
. Here, the first term

decays as jω1 − ω2j−1=2 and is the long-range reflection
correlation derived in Ref. [24], while the second term is a
correction for a finite 1 − R̄ [39]. Equations (5) and (7)
provide an analytic expression forMeff and is plotted as the
red line in Fig. 4(b), with its prediction of the maximal
absorption plotted as the blue line in Fig. 4(a). When the
bandwidth Δω falls in the regime 1 ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω=δω

p
≪ 1=

ð1 − R̄Þ, the CðRÞ is dominated by the jω1 − ω2j−1=2 tail in
the long-range contribution, and Meff scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δω=δω

p
.

Although using a single spatial wave front to control
broadband light introduces a loss of control, we have
shown that long-range spectral correlations of the total
transmission and reflection in the diffusive regime [55]
significantly reduce this loss, making strong enhancements
possible across bandwidths Δω much larger than the
spectral correlation width δω of the medium. Spatial
WFS is typically realized in optics, but this effect also
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FIG. 4 (color online). Broadband coherently enhanced absorp-
tion (CEA). (a) Maximal frequency-integrated absorption
1 − Rmin and the enhancement η ¼ ð1 − RminÞ=ð1 − R̄Þ obtained
numerically (the blue circles) and analytically (the blue line)
across bandwidth Δω. The two lines below show the would-be
maximal absorption (the green dashed line) and the absorption of
the monochromatic CEA mode (the orange dot-dashed line) if
there were 1þ Δω=δω uncorrelated frequencies. The black
dotted line indicates the average absorption. (Inset) Schematic
setup of the system; a reflecting boundary on the right ensures
that the transmission is zero and the absorption is 1 − R. (b) Meff
as a function of the square-root bandwidth, evaluated numerically
from Eq. (4) (the symbols) and analytically from Eqs. (5) and (7)
(the line).
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applies to the diffusive transport of electrons and acoustic
waves. The incomplete spatial control of the input due to a
limited numerical aperture or a finite illumination area on a
wide slab can be incorporated into our formalism by
replacing t and r with the filtered matrices ~t and ~r
[6,14]; see the Supplemental Material [39] for details.
The results for uncorrelated matrices [Eq. (2)] can also treat
spatially incoherent light with multiple uncorrelated trans-
verse modes or unpolarized light with two independent
polarizations. Furthermore, the eigenproblem formalism in
the present work can be extended to study the total
transmitted flux at a given time of flight [39].
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