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The well-known Levinger-Bethe photonuclear sum rule relates the strength of the photoexcitation of the
giant dipole resonance in a nucleus to the number of nucleons in that nucleus. I extend this sum rule to
the case of virtual photons and relate the size of the magnetic polarizability of a nucleus to the Q2 slope of
the transverse virtual photoabsorption cross section integrated over the energy in the nuclear range. I check
this sum rule for the deuteron where necessary data is available, discuss possible applications and
connection with other sum rules postulated in the literature.
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The scattering of light off a composite object has long
been used to study its structure. At low frequencies,
electromagnetic waves scatter without absorption and
solely probe its mass and electric charge, the classical
Thomson result. With the photon energy raising above the
absorption threshold internal structure is revealed. Kramers
and Kronig related the photoabsorption spectrum of a
material to its index of refraction by means of a dispersion
relation [1,2] based on the probability conservation and
causality. Dispersion relations and sum rules have been
among the main tools for studying the electromagnetic
interactions in atomic, nuclear, and hadronic physics
domains. These domains roughly correspond to keV,
MeV, and GeV photon energies, respectively, and this
scale hierarchy indicates that the dynamics in each domain
can be clearly identified. The Thomas-Reiche-Kuhn sum
rule equated the sum of oscillator strengths in an atom to
the number of electrons [3–5]. For nuclei, Levinger-Bethe
[6] and Gell-Mann, Goldberger, and Thirring [7] related the
integrated photoabsorption cross section to the number of
elementary scatterers, protons, and neutrons in a nucleus.
For GeVenergy photons that resolve the nucleon structure,
Gorchtein et al. [8] observed that the integrated strength of
the nucleon resonances may be explained by counting the
constituent quarks. These sum rules are an economic, albeit
approximate way to express duality, the transcendence of
higher energy degrees of freedom in the low-energy
phenomena [9]. In this Letter, I extend the Thomas-
Reiche-Kuhn-Levinger-Bethe (TRKLB) sum rule to the
case of the virtual photons, obtain a sum rule for the nuclear
magnetic polarizability, and discuss further applications.
The spin-averaged, forward Compton tensor Tμν is

expressed in terms of two scalar amplitudes T1;2ðν; Q2Þ
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with the invariants defined in terms of the nucleus and
photon four-momenta p, q as ν ¼ ðp · qÞ=MT ,
Q2 ¼ −qμqμ ¼ −q2 ≥ 0, and p2 ¼ M2

T , with MT the
target nucleus mass. In this Letter, I concentrate on the
transverse amplitude T1. Its imaginary parts are related to
the unpolarized structure function F1 as ImT1 ¼
ðπαem=MTÞF1, with αem ≈ 1=137 the fine structure
constant. T1 satisfies a once subtracted dispersion
relation (DR)

ReT1ðν;Q2Þ¼T1ð0;Q2Þþαemν
2
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Z
∞

0

dν02F1ðν0;Q2Þ
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where the integral is understood in terms of its principal
value. I remove the pole contribution that is due to an
absorption of a virtual photon by an on-shell ground state
(this separation is well defined, see, e.g., discussion in
[10]). Upon this removal, the subtraction constant
Tnp
1 ð0; Q2Þ is defined in terms of the nuclear charge form

factor FC normalized to unity at Q2 ¼ 0, and the nuclear
magnetic polarizability βnuclM ðQ2Þ generalized to finite Q2,

Tnp
1 ð0; Q2Þ ¼ −

αem
M

Z2F2
CðQ2Þ

Z þ N
þQ2βnuclM ðQ2Þ; ð3Þ

with ZðNÞ the number of protons (neutrons) in the nucleus,
αem ≈ 1=137 the fine structure constant, M ≈Mp ≈Mn the
nucleon mass, such that MT ≈ ðZ þ NÞM.
Real photoabsorption on lead, shown in Fig. 1, illustrates

several general features common to all nuclei: (i) the
strength of nuclear excitations is concentrated in the
region between the breakup threshold νminðQ2Þ ¼
BþQ2=ð2MTÞ, with B the nucleon removal threshold
for the nucleus, and νmaxðQ2Þ ≈ BþQ2=ð2MÞ þ 30 MeV;
(ii) nuclear cross sections stay small above that energy and
below the threshold for the nucleon breakup
νπðQ2Þ ¼ Q2=ð2MÞ þmπ þm2

π=ð2MÞ, with mπ the pion
mass; (iii) above this threshold, an incoherent absorption by
Z protons and N neutrons that make up a nucleus is a good
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overall representation of the cross section (modulo nuclear
effects). I exploit the observed gap between νmax and νπ by
evaluating the DR for T1 at an intermediate energy
ν∞ðQ2Þ ≈ BþQ2=ð2MÞ þ 70 MeV, impose the hierarchy
of scales, ν2max ≪ ν2∞ ≪ ν2π , and take respective limits

ReTnp
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For compactness, I suppressed the Q2 dependence of the
integration limits. The integral between νmax and νπ is
understood in the sense of its principal value. Next, the scale
hierarchy is used to calculate ReTnp

1 ðν∞; Q2Þ: the scale ν∞
was chosen such that the bulk of nuclear excitations lies
significantly below it. Then, photons will scatter off essen-
tially unbound nucleons; the energy is significantly lower
than the pion production threshold, so the nucleon structure is
not resolved at that energy, and it is legitimate to approximate
its value by a low-energy expansion up to order ν2∞
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where FpðnÞ
D denotes the proton (neutron) Dirac form factor,

and βpðnÞM ðQ2Þ stand for the proton (neutron) magnetic

polarizability, respectively, extended to finite Q2. A sub-
tracted dispersion relation analogous to that of Eq. (2) is
imposed on the single nucleon amplitudes, with Fp;n

1 free-
nucleon structure functions. Now, Eqs. (3), (4), (5) can be
combined together, and the coefficients at different powers of
ν∞ equated. If nuclear and hadronic scales are, indeed, well
separated, above νmaxðQ2Þ nucleons are unbound, and the
coefficient at ν2∞ should vanish
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Turning to the terms independent of ν2∞, and settingQ2 ¼ 0,
Levinger and Bethe [6] obtained

ZN ¼ 2

Z
νmax

νmin

dν
ν
F1ðν; 0Þ; ð7Þ

i.e., the integrated strength of nuclear excitations is fixed by
the number of nucleons within the nucleus. The Levinger-
Bethe sum rule of Eq. (7) is obeyed for awide range of nuclei,
typically better than 10% [16]. As an example, the para-
metrization of the deuteron photodisintegration cross section
in Ref. [17] leads to the value of the right hand side 1.007, in
excellent agreement with the sum rule, NZ ¼ 1. Deviations
due to the nonvanishing of the principal value integral and
effects of nuclear binding and shadowing in Eq. (6) were
estimated, e.g., in Refs. [6,7].
I now consider the first derivative with respect to Q2 at

the origin. Using the charge radius defined as
R2
ch ¼ −6F0

Cð0Þ, the sum rule for the nuclear magnetic
polarizability is obtained

βnuclM ¼ 2αem
M

Z
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νthr

dν
ν

d
dQ2
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−
Z2αem
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R2
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3
; ð8Þ

where I neglected effects of nuclear and nucleon recoil that
enter the Q2 dependence of the integration limits (above,
taken at Q2 ¼ 0), effects of nucleon polarizabilities and
nucleon charge radii.
This sum rule is useful since, for most nuclei, the

magnetic polarizability is not known, unlike the sum
αnuclE þ βnuclM that is fixed by the Baldin sum rule [18]

αnuclE þ βnuclM ¼ 2αem
MT

Z
∞

νmin

dν
ν3

F1ðν; 0Þ; ð9Þ

and can be directly extracted from the experimental data.
To my knowledge, the deuteron is the only nucleus for

which theoretical predictions of βnuclM exist, calculated in
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FIG. 1 (color online). Total photoabsorption cross section on
lead in μbarn as a function of energy. Data in the nuclear range
(blue crosses) extend up to νmax ≈ 30 MeV and are from
Ref. [11]. Data above the pion production threshold νπ (red
open circles) are from [12–15]. The vertical dashed lines display
νmax, ν∞, and νπ , see text for further details.

PRL 115, 222503 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

27 NOVEMBER 2015

222503-2



effective field theory [19] and potential model [20]
approaches, summarized as βdM ¼ 0.072ð5Þ fm3. One can
now check how important the neglected terms are numeri-
cally. Using the value of the proton charge radius from
recent μH measurements [21,22], and the neutron charge
radius along with the nucleon magnetic polarizabilities
from Ref. [23] gives ∼1.6 × 10−3 fm3, 2 orders of magni-
tude below βdM. The effect of the deuteron charge radius
taken from [24] is of a similar order, ∼ − 1.5 × 10−3 fm3,
and is also negligible. However, for heavy nuclei, these two
contributions can have very different sizes, e.g., for lead,
the two terms give ∼0.08 fm3 and ∼ − 0.5 fm3, respec-
tively, which explains the choice of keeping the nuclear
radius effect but neglecting the nucleonic contributions.
The value of βM for lead is unknown, but αE þ βM ≈
14.5 fm3 [16] gives a rough idea, even though it can be
expected that βM ≲ 0.1αE for that nucleus.
Using a recently proposed detailed parametrization of

deuteron breakup data [17] that covers Q2 in the range
[0.005 GeV2; 3 GeV2] and energy between the deuteron
breakup threshold and well into the hadronic range, a
numerical evaluation of the right hand side of Eq. (8) can be
done. It leads to βdM ¼ 0.096ð15Þ fm3, close to the model-
based expectation, βdM ¼ 0.072ð5Þ fm3. Note that even
raising νmax to 140 MeV would increase the integral by
mere 1%, so the result is very robust. To enforce the
agreement, one needs to modify the parametrization of
Ref. [17] [Eq. (27) and Table II of that Ref.] via

fFSIT ðQ2Þ ¼ 2.15ð35Þ × 104 GeV−3Q2

½1þ 52ð8Þ GeV−2Q2�2 ; ð10Þ

to

~fFSIT ðQ2Þ ¼ 1.61ð11Þ × 104 GeV−3Q2

½1þ 35ð6Þ GeV−2Q2�2.2 : ð11Þ

The error in the numerator is fixed by that in the value of
βdM, and the error (and a different power) in the numerator is
obtained by a new fit to the quasielastic (QE) data, as
described in Ref. [17]. The two fit functions are shown in
Fig. 2. With this exercise, I demonstrate that the existing
deuteron quasielastic data are consistent with the proposed
sum rule. The original parametrization in Ref. [17] led to a
1.5σ disagreement because the slope parameter was
obtained by an extrapolation beyond the kinematical range
covered by the data without using the value of βdM as a
constraint.
Another sum rule involving the Q2 slope of the inte-

grated structure functions was proposed by Bernabeu and
Jarlskog [25]. They assumed that the longitudinal ampli-
tude obtained as a linear combination of T1 and T2 obeys an
unsubtracted dispersion relation, and argued that the
longitudinal structure function has to vanish identically
at the real photon point independently of the energy to

ensure gauge invariance, hence, the integral becomes
convergent. In this way, they arrived at a sum rule for
the electric polarizability αE alone, which is, however,
incompatible with the βM sum rule proposed here. I believe
that the reason for the disagreement lies in their use of an
unsubtracted dispersion relation. Since it is the Q2 slope
that gives the sum rule, one, in reality, explicitly departs
from the real photon point; then, the argument of vanishing
of the longitudinal structure function at infinity is no longer
valid, and one is left with a divergent integral, so that the
limit Q2 → 0 does not exist.
The parametrization of deuteron quasielastic data was

used in Ref. [17] to estimate the two-photon exchange
(TPE) correction to the 2P-2S Lamb shift in the muonic
deuterium atom. A modification of the data parametrization
proposed above, based on the new sum rule, will lead to a
different prediction for that correction. Moreover, the
photonuclear sum rule discussed above can be further
extended beyond its value and slope at Q2 ¼ 0 (TRKLB
and the βnuclM sum rule, respectively) to predict the full Q2

dependence of the subtraction function via

Tnp
1 ð0; Q2Þ − Tnp

1 ð0; 0Þ

¼ 2αem
MT

Z
νmaxðQ2Þ

νminðQ2Þ

dν
ν
½F1ðν; Q2Þ − F1ðν; 0Þ�; ð12Þ

which contributes to the shift of the 2S state through
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FIG. 2 (color online). The comparison of the old fit without the
use of the sum rule, fFSIT (blue dashed curve) and the new fit using
the sum rule, ~fFSIT (red solid curve), with the uncertainty of each
fit indicated by the band of the respective color. The sum rule is
indicated by the star. The shaded band shows the kinematical
range that is covered by the existingDðe; e0Þpn data. The inset in
the upper right corner magnifies the small values of Q2 where the
slope of the new fit function is fixed to reproduce the value of βdM.
Data points correspond to experimental data sets analyzed in
Ref. [17] (Refs. [35–42] of that article).
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ΔEsubt
2S ¼ 4αemϕ

2
2Sð0Þ

Z
∞

0

dQγ1ðτlÞ
Tnp
1 ð0;Q2Þ−Tnp

1 ð0;0Þ
Q2

;
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with γ1ðxÞ ¼ ð1 − 2xÞ ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p þ 2x3=2, τl ¼ Q2=ð4m2
l Þ, ml

the lepton mass, and ϕ2
nSð0Þ ¼ ðZαemmrÞ3=πn3 the squared

atomic wave function at origin with the reduced mass
mr ¼ MTml=ðMT þmlÞ. The value of T1ð0; 0Þ is sub-
tracted to account for its inclusion in the lowest order
atomic calculation. A similar approach based on the finite
energy sum rule obtained upon removing the Regge-
behaved part of the hadronic photoabsorption was applied
to the muonic hydrogen Lamb shift [26].
Table I displays the numerical result for the shift of the 2S

state in muonic deuterium based on the new sum rule in
comparison with the previous evaluation not based on
the sum rule [17] and potential models of Refs. [27–30].
The three values agree within the error that is dominated
by the uncertainty of the dispersion relation-based evalua-
tions (the columns “this work” and “Ref. [17]” in Table I)
due to the low-2S behavior of the quasielastic cross sections.
The systematical uncertainty in the second bracket is due to
the use of the sum rule for the subtraction term, and was
estimated by varying the value of νmax between 30 MeV
above the quasielastic peak, and the pion production thresh-
old. An additional 0.01 meV uncertainty due to βp;nM was
added in quadrature. It amounts in ≈8% uncertainty and
can be compared to 1% in the sum rule for βdM. The reason
for the larger uncertainty is mostly in a steep rise withQ2 of
the QE peak that resides at higher energy than the threshold
peak that completely dominates at Q2 ¼ 0.
The large uncertainty of the DR result at present prevents

one from talking of a disagreement between the new
prediction and other models; nevertheless, when new
deuteron quasielastic data at lower Q2 will become avail-
able [31], the uncertainty may be sizably reduced [17]. In

that case, the shift of −0.195 meV will result in a different
value of the deuteron charge radius extracted from
the μD Lamb shift measurement. Using ΔERd

2S ¼
6.1103ð3ÞðRd=fmÞ2 meV [27], the extracted value of Rd
would be larger by δRd ¼ 0.007 fm. It is smaller than the
uncertainty of the radius extraction from scattering data
Re-D
d ¼ 2.128ð11Þ fm but considerably larger than that

using the isotope shiftmeasurements [32,33] and themuonic
hydrogen Lamb shift [21,22], as well as the expected
uncertainty of the muonic deuterium data. The method
based on the new sum rule provides a different basis for
estimating the subtraction function, as compared to the
minimalist assumption used in Ref. [17] that the Q2

dependence of the deuteron magnetic polarizability resem-
bles that of the charge form factor βdMðQ2Þ ∼ βdMF

d
CðQ2Þ.

The sum-rule-based calculation can be seen as a valuable
systematic study of DR calculations. A direct calculation of
βdMðQ2Þ, e.g., in an EFT approach, would help further in
assessing this systematics.
The method proposed here can be used for calculating

the subtraction function contribution to the Lamb shift in
other light muonic atoms with the new experiments under-
way [34]. For nuclei beyond deuteron, a reliable estimate of
βnuclM in potential models and in effective theories might be
considerably more complicated. The proposed sum rule
may serve a model-independent tool to extract βnuclM from
data, e.g., interpret measurements of M1 strength in heavy
nuclei [35,36].
Currently, models of a strongly bound composite

dark matter (DM) [37] have received much attention.
Such DM particles would have electromagnetic polariz-
abilities and could interact with ordinary matter by means
of the two-photon exchange [38]. At present, estimates
of the nuclear part of the interaction have a modest �
order of magnitude accuracy [38]. For more quantitative
calculations based on dispersion relations the new sum rule
will help constraining the subtraction function contribution.
In summary, I proposed a new sum rule that generalizes

the Levinger-Bethe sum rule to the case of virtual photons.
Its slope at zero photon virtuality relates the nuclear
magnetic polarizability to the slope of the transverse
photoabsorption cross section integrated over the nuclear
energy range. I showed that the quasielastic data on the
deuteron are compatible with the sum rule, and applied its
full version to the calculation of the Lamb shift in muonic
deuterium. I discussed applications to light muonic atoms
and direct DM detection.
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TABLE I. TPE contributions to the shift of the 2S state in
muonic deuterium in units of meV. The inelastic contribution is a
sum of PWIA, FSI, ⊥, and hadr contributions listed in Table I of
[17]. The numbers in the first and second column in this row
correspond to the use of ~fFSIT and fFSIT , respectively. The
subtraction contribution is calculated with the sum rule in this
work, while the number in the second column is a sum of the Th.
and β terms in Table I of [17]. The total contribution is obtained
by adding the upper two numbers with the elastic term obtained in
[17], and the asterisk indicates the inclusion of the internal
Coulomb correction of 0.261 meV [27]. The total contribution
summarizing potential models calculations [27] is listed in the
rightmost column.

ΔEi
2S This work Ref. [17] Refs. [27–30]

ΔEinel
2S −2.294ð740Þ −2.357ð740Þ � � �

ΔEsubt
2S 0.505(35)(40) 0.763(40) � � �

ΔEtot
2S −1.945ð740Þ* −1.750ð740Þ* −1.709ð15Þ
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