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A new class of solutions to the electroweak hierarchy problem is presented that does not require either
weak-scale dynamics or anthropics. Dynamical evolution during the early Universe drives the Higgs boson
mass to a value much smaller than the cutoff. The simplest model has the particle content of the standard
model plus a QCD axion and an inflation sector. The highest cutoff achieved in any technically natural
model is 108 GeV.
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Introduction.—In the 1970s, Wilson [1] had discovered
that a fine-tuning seemed to be required of any field theory
which completed the standard model Higgs sector, unless
its new dynamics appeared at the scale of the Higgs mass.
Since then, there have essentially been one and a half
explanations proposed: dynamics and anthropics.
Dynamical solutions propose new physics at the electro-

weak scale which cuts off contributions to the quadratic
term in the Higgs potential. Proposals include supersym-
metry, compositeness for the Higgs boson (and its holo-
graphic dual), extra dimensions, or even quantum gravity
at the electroweak scale [2–6]. While these scenarios all
lead to a technically natural electroweak scale, collider and
indirect constraints force these models into fine-tuned
regions of their parameter spaces. Anthropics, on the other
hand, allows for the tuning, but it assumes the existence of a
multiverse. Its difficulty is in the inherent ambiguity in
defining both probability distributions and observers.
We propose a new class of solutions to the hierarchy

problem. The Lagrangian of these models is not tuned and
yet has no new physics at the weak scale cutting off loops.
In fact, the simplest model has no new physics at the weak
scale at all. It is instead dynamical evolution of the Higgs
mass in the early Universe that chooses an electroweak
scale parametrically smaller than the cutoff of the theory.
Our theories take advantage of the simple fact that the
Higgs mass squared equal to zero, while not a special point
in terms of symmetries, is a special point in terms of
dynamics; namely, it is the point where the weak force
spontaneously breaks and the theory enters a different
phase [7]. It is this which chooses the weak scale, allowing
it to be very close to zero. This mechanism takes some
inspiration from Abbott’s attempt to solve the cosmological
constant problem [8].

Our models only make the weak scale technically natural
[9], and we have not yet attempted to UV complete them
for a fully natural theory, though there are promising
directions [10–14]. Note that technical naturalness means
a theory still contains small parameters, yet they are
quantum mechanically stable, and therefore one can imag-
ine field-theoretic UV completions. In addition, our models
require large field excursions, far above the cutoff, and
small couplings. We judge the success of our models by
how far they are able to naturally raise the cutoff of the
Higgs boson. Our simplest model can raise the cutoff to
∼1000 TeV, and we present a second model which can
raise the cutoff up to ∼105 TeV.
Minimal model.—In our simplest model, the particle

content below the cutoff is just the standard model plus the
QCD axion [15–17], with an unspecified inflation sector.
Of course, by itself the QCD axion does not solve the
hierarchy problem. However, the only changes we need to
make to the normal axion model are to give the axion a
very large (noncompact) field range, and a soft symmetry-
breaking coupling to the Higgs boson.
The axion will have its usual periodic potential, but now

extending over many periods for a total field range that
is parametrically larger than the cutoff (and may be larger
than the Planck scale), similar to recent inflation models
such as axion monodromy [10–14]. The exact (discrete)
shift symmetry of the axion potential is then softly broken
by a small dimensionful coupling to the Higgs boson.
This small coupling will set the weak scale and will be
technically natural, making the weak scale technically
natural and thus solving the hierarchy problem.
We add to the standard model Lagrangian the following

terms:
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ð−M2 þ gϕÞjhj2 þ VðgϕÞ þ 1

32π2
ϕ

f
~GμνGμν; ð1Þ

where M is the cutoff of the theory (where standard model
loops are cutoff), h is the Higgs doublet, Gμν is the QCD

field strength (and ~Gμν ¼ ϵμναβGαβ), g is our dimensionful
coupling, and we have neglected order one numbers. We
have set the mass of the Higgs boson to be at the cutoff M
so that it is natural. The field ϕ is like the QCD axion, but it
can take on field values much larger than f. However,
despite its noncompact nature it has all of the properties of
the QCD axion with couplings set by f. Setting g → 0, the
Lagrangian has a shift symmetry ϕ → ϕþ 2πf (broken
from a continuous shift symmetry by nonperturbative QCD
effects). Thus, g can be treated as a spurion that breaks
this symmetry entirely. This coupling can generate small
potential terms for ϕ, and we take the potential with
technically natural values by expanding in powers of gϕ.
Nonperturbative effects of QCD produce an additional
potential for ϕ, satisfying the discrete shift symmetry.
Below the QCD scale, our potential becomes

ð−M2 þ gϕÞjhj2 þ ðgM2ϕþ g2ϕ2 þ � � �Þ þ Λ4 cosðϕ=fÞ;
ð2Þ

where the ellipsis represents terms higher order in gϕ=M2,
and thus we take the range of validity for ϕ in this effective
field theory to be ϕ≲M2=g. We have approximated the
periodic potential generated by QCD as a cosine, but in fact
the precise form will not affect our results. Of course Λ is
very roughly set by QCD, but with important corrections
that we will discuss below. Both g and Λ break symmetries,
and it is technically natural for them to be much smaller
than the cutoff. The parameters g and Λ are responsible for
the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
We will now examine the dynamics of this model in the

early Universe. We take an initial value for ϕ such that the
effective mass squared of the Higgs boson, m2

h, is positive.
During inflation, ϕ will slow roll, thereby scanning the
physical Higgs mass. At some point in the ϕ potential,
the quadratic term for the Higgs boson crosses zero and the
Higgs boson develops a vacuum expectation value (VEV).
As theHiggsVEVgrows, the effective heights of the bumps,
Λ4, in the periodic potential grow.When the bumps are large
enough, they become barriers which stop the rolling of ϕ
shortly afterm2

h crosses zero. This sets the Higgs mass to be
naturallymuch smaller than the cutoff (see Fig. 1). Since it is
the axion which is responsible for the dynamical relaxation
of the weak scale, we call it the relaxion.
The (rel-)axion barrier height depends on the Higgs VEV

through its dependence on quark masses [16]. When the
Higgs VEV is near its standard model value, the potential
barrier is approximately

Λ4 ∼ f2πm2
π ð3Þ

times the dimensionless ratios of the quark masses. Since
m2

π changes linearly with the quark masses, it is propor-
tional to the Higgs VEV. Therefore, Λ4 grows linearly with
the VEV [18].
During inflation, the relaxion must roll over an Oð1Þ

fraction of its full field range, ∼ðM2=gÞ, to naturally cross
the critical point for the Higgs boson where m2

h ¼ 0. Note
that for the early Universe dynamics, one can consider the
potential to be just gM2ϕ or g2ϕ2 since the field value for
ϕ ∼ ðM2=gÞ makes these equivalent. Our solution is insen-
sitive to the initial condition for ϕ (as long as the Higgs
boson starts with a positive mass squared) because ϕ is
slow rolling due to Hubble friction. This places the slow-
roll constraints on ϕ that g < Hi and g < ðH2

i Mpl=M2Þ,
whereHi is the Hubble scale during inflation andMpl is the
reduced Planck mass. It is critical that ϕ is slowly rolling,
not only because ϕ will reach a terminal velocity,
_ϕ≃ V 0=Hi, and thus be insensitive to initial conditions,
but because it will keep ϕ’s kinetic energy small allowing
the onset of barriers to stop its evolution, regardless of its
initial value. In the end, it will turn out that these constraints
are trivially satisfied and superseded by stronger con-
straints below.
A requirement on inflation is that it lasts long enough for

ϕ to scan the entire range. During N e-folds of inflation, ϕ
changes by an amount Δϕ ∼ ð _ϕ=HiÞN ∼ ðV 0

ϕ=H
2
i ÞN∼

ðgM2=H2
i ÞN. Requiring that Δϕ≳ ðM2=gÞ gives the

requirement on N,

N ≳H2
i

g2
: ð4Þ

FIG. 1 (color online). Here is a characterization of the ϕ’s
potential in the region where the barriers begin to become
important. This is the one-dimensional slice in the field space
after the Higgs boson is integrated out, effectively setting it to its
minimum. To the left, the Higgs VEV is essentially zero and is
OðmWÞ when the barriers become visible. The density of the
barriers is greatly reduced for clarity.
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There are three conditions on the Hubble scale of inflation.
First is that the vacuum energy during inflation is greater
than the vacuum energy change along the ϕ potential,
namely, M4, so

Hi >
M2

Mpl
ðvacuum energyÞ: ð5Þ

The second constraint is the requirement that the Hubble
scale during inflation is lower than the QCD scale (so the
barriers form in the first place):

Hi < ΛQCD ðbarriers formÞ; ð6Þ

where ΛQCD is taken to be the scale where the instanton
contributions to the axion potential are unsuppressed. We
expect numerically that ΛQCD ∼ Λ. Finally, a condition
could be placed on the Hubble scale by requiring that ϕ’s
evolution be dominated by classical rolling (and not
quantum fluctuations—similar to a constraint of δρ=ρ < 1
in inflation) so that every inflated patch of the Universe
makes it to the electroweak vacua

Hi <
V 0
ϕ

H2
i
→ Hi < ðgM2Þ1=3 ðclassical beats quantumÞ:

ð7Þ

We will see below that, while this constraint will be a bit
stronger than the previous one, a certain variation of the
model can avoid this constraint, in which case the previous
one becomes the relevant one.
The slow rolling of ϕ stops when Λ has risen to the point

where the slope of the barriers Λ4=f matches the slope of
the potential, gM2. This occurs at [19]

gM2f ∼ Λ4: ð8Þ

From the three condition equations (5), (7), and (8), we
have a constraint on the cutoff M:

M <

�
Λ4M3

pl

f

�1=6

∼ 107 GeV ×

�
109 GeV

f

�
1=6

; ð9Þ

where we have scaled f by its lower bound of 109 GeV set
by astrophysical constraints on the QCD axion (see, for
example, Ref. [20]).
Note that in order to have a cutoff M above the weak

scale, mW , Eq. (8) requires gf ≪ m2
W . This implies that the

effective step size of the Higgs mass from one minimum to
the next is much smaller than the weak scale. So the barriers
grow by a tiny fractional amount compared to ΛQCD per
step. Classically, ϕ stops rolling as soon as the slope of its
potential changes sign. However, since gf ≪ m2

W , the slope
of the first barrier after this point is exceedingly small,

much smaller than Λ4=f. Therefore, around this point,
quantum fluctuations of ϕ will be relevant. The field ϕ will
be distributed over many periods f (see Fig. 2), but in all
of these the Higgs boson will have a weak-scale VEV.
This quantum spreading is an oddity of the model. As the
Universe inflates, different patches of the Universe will
have a range of ϕ field values and a range of Higgs VEVs,
but all around the weak scale. In future work, we will show
it is possible to build models which land the full initial
patch in a single vacuum, thus removing this feature of our
solution [21].
At the end of inflation, part of the resulting ϕ range stops

before the classical stopping point and is therefore classi-
cally unstable. This is because, during inflation, the
relaxion’s quantum fluctuations dominates its classical
rolling on these “ledges” in the potential, and thus some
tiny fraction of Hubble patches remain there until they can
classically roll. The vast majority of Hubble patches find ϕ
in vacua with varying potential barrier heights. Because of
the small value of gf ∼ Λ4=M2, barrier heights grow
slowly, with subsequent minima increasing their barriers
by ∼Λ4(Λ4=ðM2m2

hÞ) such that many barriers can be
“walked over” via field fluctuations of the order of the
Hubble scale. Eventually, most patches reach vacua where
the barrier height does not allow quantum fluctuations to
randomly walk over the barrier. Today, nearly all of the
classically stable vacua have lifetimes exponentially larger
than the age of the Universe. Therefore, the vast majority of
the Hubble patches at the end of inflation are in vacua
which last much longer than today’s Hubble time. As a
result of these multiple vacua, there will, in principle, be
domain walls after reheating in the full initial patch of the

(a)

(b)

(c)

(d)

FIG. 2 (color online). A close-up of the region of ϕ’s potential
as the barriers appear. The evolution in these regions are
(a) classical rolling dominated, (b) dominated by quantum
fluctuations in the steps but classical rolling between steps,
(c) classically stable, but quantum fluctuations or tunneling rates
shorter than N e-folds, and (d) classically stable, quantum
transition rates longer than both N e-folds and 10 Gyr. Again,
for clarity, the potential is not to scale.
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Universe. However, these domain walls will be spaced by
distances much larger than our current Hubble size because
we have much more than 60 e-folds of inflation in any one
vacuum, and they are therefore unlikely to be observable.
We wish to avoid eternal inflation in our scenario

because at least some part of the Universe would end up
with a Higgs VEVabove the weak scale. The decay rates to
such vacua are exponentially suppressed but with a long
enough period of inflation, some fraction of the Universe
would end up there before reheating. Although this might
naively seem like a very small part of the Universe, if we
wish to avoid discussion of measures in eternal inflation,
we must avoid this possibility. To do so, we can impose
the constraint in Eq. (7), in which case the entire initial
patch has the correct order electroweak scale at the end of
inflation.
As noted above, even if we do not have eternal inflation

in patches with large Higgs masses, we unfortunately
cannot avoid ending up in a large range of vacua. Since
all of these vacua have weak-scale Higgs VEVs, we call this
a solution to the hierarchy problem. Of course, we have not
solved the cosmological constant (CC) problem. This set of
final vacua will all have different cosmological constants. If
the solution to the CC problem is just tuning, then we must
live in the one with the correct CC. This is just the usual
tuning required for the CC problem, and not an additional
tuning. Note that the other vacua with positive CCs will
eternally inflate (as is our Universe, presumably), but in any
case they will have a weak-scale Higgs VEV for a period
that lasts much longer then 10 Gyr.
The model above is ruled out by the strong CP problem.

Since ϕ is the QCD axion, its VEV determines the θ
parameter in QCD. The relation Eq. (8) which determines
where ϕ stops rolling predicts that the local minimum for ϕ
is displaced from the minimum of the QCD part of the
potential by OðfÞ. Therefore, it generates θ ∼ 1. We found
two solutions to this problem: (i) Potential barriers for ϕ
arise from a new strong group, not QCD. (ii) The slope of
the ϕ potential decreases dynamically after inflation. We
discuss the latter solution below and the former in section
NonQCD model. Of course, other solutions to the strong
CP problem in this context would be interesting.
One way to decrease the slope after inflation is to tie it

to the value of the inflaton σ. We can add the term κσ2ϕ2 to
the potential. One can check that our parameter space will
remain technically natural, essentially because, like the
relaxion, the classical value of the inflaton will be large
compared to the cutoff. There is now an additional slope,
κσ2M2=g, which we take to be larger than gM2. Assuming
σ has a roughly constant value during most of inflation, we
will describe this with a new effective coupling ~g2 ¼ κσ2

which is constant during most of inflation. The inflation
field drops to zero after inflation, removing this new
contribution to the potential and leaving the original slope
∼gM2. In order to solve the strong CP problem as well, we

need the slope of the potential to drop by a factor of
θ ≲ 10−10 after inflation so that the axion is only displaced
by this amount from its (local) minimum. Thus, we require
gM2 ∼ θ~g2ðM2=gÞ, or g ∼ ~g

ffiffiffi
θ

p
. This has the added benefit

that, once the slope drops, every ϕ vacuum that any patch of
the Universe sits in now becomes very long-lived because
the effective barriers rose by ≳1010. It is easy to show that
quantum corrections from this term (assuming σ > Mpl

does not contribute significantly to the ϕ potential).
The condition on the number of e-folds of inflation is

now

N ≳ θ
H2

i

g2
: ð10Þ

The condition equations (5), (6), (7), and (8) become,
respectively,

Hi >
M2

Mpl

ffiffiffi
θ

p ðvacuum energyÞ; ð11Þ

Hi < ΛQCD ðbarriers formÞ; ð12Þ

Hi <

�
gM2

θ

�
1=3

ðclassical beats quantumÞ; ð13Þ

gM2f ∼ Λ4θ ðbarrier heightsÞ: ð14Þ

Note that, because of the dropping slope, the vacuum
energy Eq. (11) is greater than the fourth power of the
cutoff, M4, by a power of θ−1. This is not a problem for
the effective theory, but it may be of concern for the
UV completion.
The constraints above give a bound on the cutoff of

M <
�
Λ4M3

pl

f

�1=6

θ1=4 ∼ 30 TeV

×

�
109 GeV

f

�
1=6

�
θ

10−10

�
1=4

: ð15Þ

This model now satisfies all constraints and has only the
QCD axion and inflaton added to the standard model below
the cutoff. Thus, the minimal model has no hierarchy
problem and no strong CP problem, and it has a natural
candidate for dark matter. Because of the constraints, its full
parameter space can be probed in a number of ways in
future experiments.
Our mechanism for solving strong CP, dropping the

slope, potentially allows us to loosen the constraint from
requiring classical rolling to dominate [Eq. (13)]. If when
the slope drops the sign of the underlying slope is the
opposite sign, the small fraction of patches that have not
reached the barriers will eventually find themselves with a
large negative cosmological constant and should suffer a
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collapse and not eternal inflation (assuming one of the
“typical” patches has our measured cosmological constant).
Potentially, we can ignore the classical rolling constraint
and allow a higher cutoff—using Eqs. (11) and (12), we
derive

M < ðΛMplÞ1=2θ1=4 ∼ 1000 TeV ×

�
θ

10−10

�
1=4

: ð16Þ

One concern about loosening this constraint is that there
are a small fraction of patches that naively fluctuate well
beyond ϕ ∼M2=g. These patches, however, are not a
concern if, for example, ϕ is periodic with period ∼M2=g.
A final consistency check is making sure that reheating

at the end of inflation does not destabilize ϕ and take us
out of a good minimum (one in which the electroweak scale
is the correct size). If the standard model fields reheat
to temperatures below the temperature where appreciable
barriers form (roughly 3 GeVassuming θ ¼ 10−10; see, for
example, Ref. [22]), then ϕ remains in its original vacuum,
though it can be displaced from its minimum. If the reheat
temperature is above this scale, the barriers effectively
disappear and the relaxion can begin to roll. We estimate
the distance ϕ rolls (and one can show it slow rolls as
long as Δϕ < Mpl) as

Δϕ
f

∼
_ϕ

Hbf
∼

V 0

H2
bf

∼ θ
Λ4

T4
b

M2
pl

f2
; ð17Þ

where Tb is the scale where barriers begin to form andHb is
the Hubble scale at this temperature. Taking Tb ∼ 3 GeV
and θ ¼ 10−10, we find that ϕmoves less than one period if
f > 1010 GeV. However, even for f ¼ 109 GeV (roughly
the lower bound on the QCD axion coupling), while the
relaxion rolls through multiple periods, it changes the
Higgs squared mass by less than 1 eV2 for any cutoff
above 1 TeV. And because the relaxion still easily satisfies
the slow roll condition, it stops rolling once the barriers
appear. Thus, the reheat temperature can be larger (as large
as the cutoff), without destabilizing the mechanism that
chose the small electroweak scale.
Non-QCD model.—Our solution to the hierarchy prob-

lem only requires the Higgs VEV to produce barriers which
stop ϕ from rolling. If the barriers are produced by
something other than QCD, we can avoid the impact on
the strong CP problem (as it can, for example, be solved by
the standard axion), and the barrier heights can be larger
than the QCD scale. As we see in the model below, both of
these allow for a larger upper bound on the cutoff, though
we require a coincidence of scales due to current exper-
imental constraints (similar to the μ problem in the minimal
supersymmetric standard model [2]).
The dynamics of this model are similar to the previous

one—ϕ rolls until the Higgs VEV is large enough to
produce barriers to stop ϕ. The ϕ Lagrangian is the same as

in the first model, except that it couples to the ~G0μνG0
μν of a

new strong group (not QCD), which we take to be SUð3Þ.
The Higgs boson couples to new fermions which are
charged under both the new strong group and the electro-
weak group. Its VEV contributes to their masses and raises
the barriers when turned on. The upper bound on the cutoff
is much larger than the model in section Minimal Model,
mostly due to the avoidance of the strong CP contributions.
The new fermions are required to be at the weak scale, and
they are thus collider accessible and impact the Higgs
boson and electroweak precision physics.
The new fermions are labeled suggestively as (L;N) and

their conjugates (Lc; Nc). The fields L and N carry the
same standard model charges as the lepton doublet and the
right-handed neutrino, respectively, and are in the funda-
mental representation of the new strong group, and Lc and
Nc are in the conjugate representations. They have Dirac
masses and Yukawa couplings with the Higgs boson as
follows:

L ⊃ mLLLc þmNNNc þ yhLNc þ ~yh†LcN: ð18Þ
Collider and other constraints require mL to be greater than
the weak scale, but no such constraint exists onmN , and the
barriers in the ϕ potential vanish as the lightest fermion
mass goes to zero. Thus, the key is that a Higgs VEV can
significantly increase the mass of the lightest fermion at
tree level. A naive dimensional analysis estimate of the
barrier coefficient (in front of the periodic potential) is
Λ4 ≃ 4πf3π0mN , where fπ0 is the chiral symmetry-breaking
scale of the new strong group and we have assumed that
mL ≫ fπ0 ≫ mN .
In this limit, the Higgs VEV gives a contribution to

the lightest fermion mass of size y~yhhi2=mL. Technical
naturalness requires N’s Dirac mass to be at least the larger
of ∼ðy~y=16π2ÞmL logM=mL and ∼y~yf2π0=mL, and thus the
Higgs VEV only has a significant impact if

fπ0 < hhi and mL <
4πhhiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logM=mL

p : ð19Þ

In addition, for the Higgs boson to have an effect, the
lightest fermion, of mass ∼mN , should be lighter than the
confinement scale—otherwise, the axion potential will be
saturated. The additional constraint is

4πfπ0 >
y~yhhi2
mL

: ð20Þ

There should be a lower limit on mL around the weak
scale from collider production of L; Lc. In the part of
parameter space with the largest allowed fπ0 (and the largest
allowed cutoff), the bound should be weaker than that on
chargino or neutralino production [23] as only the baryon-
like states should leave significant missing transverse
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energy, while the meson states decay promptly via mixing
with the Higgs boson. Another constraint on the Yukawa
couplings is from Higgs physics, namely, decays of the
Higgs boson to the composite N states. For example,
if y; ~y≲ 0.1 and mL > 250 GeV, the branching ratio to
the new mesons is less than 10%. In addition, there are
precision electroweak constraints, which are more impor-
tant than the Higgs constraints only if mL is small. Finally,
there may be interesting cosmological constraints (or
signals) on higher-dimensional operators from the long-
lived or stable baryons in this sector. We leave all of these
studies for future work.
Thus, the dynamics are exactly those of the model in

section Minimal Model, where ϕ rolls, turns on the Higgs
VEV, and is stopped by barriers determined by the VEV.
The same constraints in Eqs. (5), (7), and (8) apply
[in which case Ref. (6) is already satisfied], with
Λ4 → 4πf3π0mN ∼ 4πf3π0y~yhhi2=mL. One additional differ-
ence is that the ϕ field is no longer the QCD axion, so the
bounds on its couplings are much weaker. Assuming f is
at least as large as the cutoff, we can parametrize the bound
on M as

M < ðΛ4M3
plÞ1=7

�
M
f

�
1=7

< 3 × 108 GeV

�
fπ0

30 GeV

�
3=7

�
y~y
10−2

�
1=7

×
�
300 GeV

mL

�
1=7

�
M
f

�
1=7

< 2 × 108 GeV

�
fπ0

30 GeV

�
4=7

�
M
f

�
1=7

; ð21Þ

where, in the last line, we used Eq. (20). In the standard
model, a cutoff that saturates this bound would require a
tuning of one part in 1012. Here, we have achieved this
hierarchy dynamically.
Again, a final constraint comes if reheating occurs

above the strong coupling scale. In that case, the relaxion
begins to roll and, unlike the QCD case, requiring slow roll
is a nontrivial constraint. We require that the energy lost
due to Hubble friction is larger then the kinetic energy
gained by rolling from one barrier to the next (as they
turn on), which amounts to an order one fraction of its
kinetic energy

ð _ϕHbÞf > _ϕ2 ∼ Λ4; ð22Þ

where, again, we take Hb ∼ T2
b=Mpl, and Tb is the temper-

ature at which the effective barriers appear. We estimate this
to be T4

b ∼ 16π2f4π0 (to match the corresponding temper-
ature in QCD). Using this and our formulas for Λ4 and the
lightest fermion, mN , we arrive at a lower bound on f:

f > ð0.05ÞMpl

�
y~y
10−2

�
1=2

�
30 GeV

fπ0

�
1=2

�
300 GeV

mL

�
1=2

:

ð23Þ

One can check to see that this bound also restricts the
distance ϕ rolls before the barriers turn on to less than one
period: Δϕ < f.
Note that, from Eq. (19), this model ceases to work

properly if either mL or fπ0 gets much above a few hundred
GeV. Thus, in this model, we see that a natural solution to
the hierarchy problem requires the existence of new weak-
scale electroweak particles charged under a new gauge
group which confines below the weak scale. However,
these particles need not be charged under QCD, making
them harder to detect at hadron colliders. In addition, while
precision Higgs boson and electroweak observables depend
strongly on the Yukawa couplings,M depends only weakly
on them, and thus constraints can be easily evaded without
a significant effect on the parameter space.
Example inflation sector.—We need many e-folds of

inflation in order to have enough time for the scanning of
the Higgs mass. We find it preferable to avoid eternal
inflation because then a multiverse is produced which will
ultimately populate all of our vacua. Even without eternal
inflation, though, most inflation models can easily produce
many e-folds. For example, even single-field inflation with
an m2σ2 potential (where σ is the inflaton) will produce
enough e-folds with the required low Hubble scale when
m ∼ 10−27 GeV. However, it would have to be followed by
a second stage of inflation to achieve the observed δρ=ρ and
a large enough reheat temperature. It is not surprising that
single-field inflation can achieve the required number of
e-folds since the constraints on our models are very similar
to those on inflation.
In this section we give a simple hybrid inflation model

as a proof of principle that achieves all of our requirements
on the inflation model and gives the observed δρ=ρ. As is a
generic issue with many low-scale inflation models, how-
ever, this inflation sector is not natural. Wewill demonstrate
a model for the QCD axion solution. The same model
works for the non-QCD axion solution and has fewer
constraints. In the future we will present a new type of
inflation sector based on our mechanism, which is natural
and satisfies all of the constraints necessary for our solution
to the hierarchy problem [21]. It would be interesting to
find other natural models of inflation that also satisfy our
constraints.
We consider a hybrid inflation sector [24], with the

following relevant terms in the scalar potential:

V∋m2σ2 þ cσ2χ2 −m2
χχ

2 þ λχ4; ð24Þ

where σ is the inflaton and χ is the waterfall field. We must
satisfy the constraints on the inflation model in Eqs. (10)
and (11). We will take an initial phase of inflation with a
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super-Planckian field excursion for σ which is followed by
a normal hybrid inflation phase driven by the energy in χ.
Further, we require δρ=ρ < 1 at the beginning of inflation
in order to avoid eternal inflation. And observations require
δρ=ρ ≈ 10−5 by the end of inflation. Putting all of these
constraints together leaves an open parameter space.
One set of parameters which work for the QCD axion
model are M ∼ 104 GeV, f ∼ 109 GeV, Λ ∼ 10−1 GeV,
g ∼ 10−31 GeV, θ ∼ 10−10, Hi ∼ 10−5 GeV, final Hubble
scaleHf ∼ 10−12 GeV, and λ ∼ 10−1. Instead of attempting
to characterize the entire parameter space, we simply
present this one point which works since our goal is just
to illustrate that it is possible to find an inflation sector for
our model. One could even attempt to make this model
natural by supersymmetrizing it, but this model is just
meant to demonstrate that the requirements on inflation are
potentially satisfiable and, for example, it does not even
predict an allowed scalar tilt. (We thank Renata Kallosh for
pointing this out.) Thus, significant progress is still to be
made with a viable inflation sector.
Observables.—Central to our class of solutions is a new,

light, very weakly coupled boson. The most promising
ways to detect this field are through low-energy, high-
precision experiments. This is in stark contrast to conven-
tional solutions to the hierarchy problem, which require
new physics at the weak scale and hence are (at least
potentially) observable in colliders. A comprehensive
discussion of the experimental program necessary to
discover this mechanism is beyond the scope of this
work—we will instead highlight experimental strategies
that seem promising. While it may be challenging to
ultimately confirm our mechanism, it is an open goal
which will hopefully motivate new types of searches.
Our class of solutions generically predicts axionlike dark

matter. The simplest model predicts theQCD axion as a dark
matter candidate. Excitingly, a new area of direct detection
experiments focused on light bosons is now emerging
[25–44]. These new experiments may, for example, open
up the entire QCD axion range to exploration. In the parts
of parameter space where the axionlike particle’s lifetime
is at or below the age of the Universe, there will already
be constraints or potential cosmological signals (see, for
example, Ref. [45]). It is interesting that light field (axion-
like) darkmatter candidates in our theories replace the heavy
particle (weakly interacting massive particle–like) candi-
dates of conventional solutions to the hierarchy problem.
While our theories can have axion dark matter, the

specific prediction for the axion abundance and mass-
coupling relation may be altered. Because the axion
potential now has an overall slope, it can acquire an initial
velocity in the early Universe after reheating set by the
slow-roll condition. This would change the calculation of
the final axion dark matter abundance and is thus important
to work out. We leave this for future work, but we note that
this could predict QCD axion dark matter in a region of

parameter space that differs from where the standard axion
model does. In addition, in the non-QCD case, the field ϕ
may be stopped right when the barriers first appear, and
therefore the mass of the axion particle may be naturally
tuned to be small. This small mass improves the observ-
ability of the axion dark matter [26,27]. Interestingly,
if the axion is observed, its mass and couplings can be
measured and would not satisfy the usual relation with the
confinement scale Λ (potentially measurable in colliders).
Observation of such dark matter would be a tantalizing hint
of our mechanism.
In the QCD case there is a preference for the large θ from

Eq. (15). While this is a relatively weak preference because
of the 1=4 power, it does favor a static nucleon electric
dipole moment (EDM) that may be observable. (This is in
addition to the oscillating EDM induced by the axion in
this scenario [25].) Upcoming nucleon EDM experiments
are predicted to improve on the current bounds by several
orders of magnitude, potentially providing further hints of
this scenario (see, for example, Ref. [46]). In the non-QCD
case, there can be a large θ in the new strong group. A two-
loop diagram may then give EDMs for nucleons or
electrons which could be detectable and may even give
a constraint on parameter space.
Our models appear to generically require low-scale

inflation (unless we find a new dissipation mechanism
besides Hubble friction during inflation). This prediction
can be falsified by an observation of gravitational waves
from inflation, but it cannot be directly observed.
The models presented in this Letter either have a low

cutoff (in the QCD case) or new physics at theweak scale (in
the non-QCD case). Either case is then potentially observ-
able at the LHC or future colliders. The non-QCD case has
new fermions at the weak scale charged under a new strong
group with a confinement scale below the weak scale. This
scenario should have rich phenomenology; for example, the
lightest states are composite singlet scalars that canmixwith
the Higgs boson. For compositeness scales much smaller
than the weak scale, the phenomenology may be similar to
Refs. [47–49]. Both direct searches for new fermions with
electroweak quantum numbers and more refined measure-
ments of Higgs branching ratios could probe the parameter
space of this model, though the latter can be suppressedwith
small Yukawa couplingswithout significantly impacting our
bounds. Because the non-QCD model fails to be effective
without electroweak fermions with masses in the hundreds
of GeV, the whole parameter space could conceivably be
covered by the LHC and/or a future linear collider. Further
studies of optimal strategies are warranted. Observation of
this new weak scale physics could provide the first evidence
of such a mechanism.
Verification of a critical piece of this class of theories

could come by observing the direct coupling of the new
light field to the Higgs boson. While this is unlikely to
happen in colliders, there may be significant opportunities
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in new low-energy experiments. As a component of dark
matter, oscillations of the new light field cause oscillations
of the Higgs VEV. This causes all scales connected to the
Higgs boson—for example, the electron mass—to oscillate
in time with a frequency equal to the axion mass.
Additionally, the new light field couples to matter through
its mixing with the Higgs boson and so mediates a new
force. It may be possible to design new high-precision
experiments to search for these phenomena [50]. Such
searches will be quite challenging. However, if axionlike
dark matter is discovered first, and thus its mass is
measured, that mass can be targeted, greatly enhancing
the sensitivity of resonance searches [50].
Discussion.—We have found a new class of solutions to

the hierarchy problem. The two models in this Letter are
examples of a broader class of theories in which dynamical
evolution in the Universe drives the weak scale to its small
value. We find that, in order to realize a model of this
type, it is necessary to satisfy the following conditions.
(i) Dissipation—Dynamical evolution of a field requires
energy transfer which must be dissipated in order to allow
the field to stop, and hence stop the scan of the Higgs mass.
This also allows the model to be insensitive to initial
conditions. In our models, dissipation is accomplished
by gravity via Hubble friction during inflation. (ii) Self-
similarity—Cutoff-dependent quantum corrections will
choose an arbitrary point in the scanning field’s range at
which the Higgs mass is canceled. The scanning field must
therefore have a self-similar potential across its entire field
range so that the Higgs boson can stop its evolution at any
arbitrary point. In our models the periodic axion potential
provides this self-similarity. (iii) Higgs backreaction—The
Higgs VEV must backreact on the scanning field, stopping
the evolution at the appropriate value. In our models this is
accomplished in a technically natural way by coupling the
Higgs boson to fermions which affect the scanning field’s
potential. (iv) Long time period—There must be a suffi-
ciently long time period during the early Universe for the
Higgs mass to be scanned across the entire range from the
cutoff to zero. It would be valuable to find other models
in this class [21]. In a sense, this type of theory gives a
specific realization of the hope of applying “self-organized
criticality” to the weak scale [51].
More can be learned about this class of theories by

finding ultraviolet completions. UV completions may
impose additional constraints on these models but may
also reveal new realizations of this mechanism (e.g., as
realized in string theory with axion monodromy or higher-
dimensional effective field theory [10–14]).
While we have used this mechanism for the hierarchy

problem, it is possible that it could be applied to other
naturalness problems. For example, instead of the Higgs
boson, it could be used to make other scalar fields light (the
inflaton, curvaton, chameleons, etc.). Of course, the biggest
naturalness problem is the fine-tuning of the cosmological

constant. Perhaps a variant of the mechanism could lead the
way to a new solution.
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