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We study the thermal and nonthermal steady-state scaling functions and the steady-state dynamics of a
model of local quantum criticality. The model we consider, i.e., the pseudogap Kondo model, allows us to
study the concept of effective temperatures near fully interacting as well as weak-coupling fixed points. In
the vicinity of each fixed point we establish the existence of an effective temperature—different at each
fixed point—such that the equilibrium fluctuation-dissipation theorem is recovered. Most notably, steady-
state scaling functions in terms of the effective temperatures coincide with the equilibrium scaling
functions. This result extends to higher correlation functions as is explicitly demonstrated for the Kondo
singlet strength. The nonlinear charge transport is also studied and analyzed in terms of the effective
temperature.
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The interest in understanding the dynamics of strongly
correlated systems beyond the linear response regime has in
recent years grown tremendously. The quantum dynamics in
adiabatically isolated optical traps has been successfully
modeled using powerful numerical schemes [1,2]. In open
systemsmainly diagrammatic techniques on the Schwinger-
Keldysh contour have been employed. For nanostructured
systems several techniques exist to describe the ensuing out-
of-equilibrium properties. These approaches, however, are
either perturbative in nature [3], centered around high
temperatures and short times [4–8], or approximate the
continuous baths by discrete Wilson chains [9–11]. The
situationmight be simpler for nonlinear dynamics that arises
in the vicinity of a quantum critical point (QCP), where a
vanishing energy scale leads to scaling and universality
[12–19].
For the dynamics near classical continuous phase tran-

sitions awell-established theoretical framework exists, tying
the dynamics to the statics and the conserved quantities [20].
In addition, the concept of effective temperature (Teff ) was
established as a useful notion for the relaxational dynamics
of classical critical systems [21–24], although it appears
somewhat less useful for fully interacting critical points [23].
Teff is commonly defined by extending the equilibrium
fluctuation-dissipation theorem to the nonlinear regime. The
existence of effective temperature in quantum systems was
recently investigated [18,25–28]. For a recent review see
Ref. [25]. In comparison to classical criticality, at a QCP,

dynamics already enters at the equilibrium level. For a QCP
that can be described by a Ginzburg-Landau-Wilson func-
tional in elevated dimensions, it was found that the voltage-
driven transition is in the universality class of the associated
thermal classical model with voltage acting as Teff [12].
Unconventional QCPs in contrast are not described solely in
terms of an order parameter functional [29,30].
In this Letter we address the following general questions

within a model system of unconventional quantum criti-
cality. Is the existence of Teff tied to dynamical (or ω=T)
scaling? Does Teff have meaning for higher correlation
functions? How unique is Teff at a given fixed point once
boundary conditions have been specified? Can critical
scaling functions be expressed through Teff and if so,
how do these scaling functions relate to the equilibrium
scaling functions? The model system is the pseudogap
Kondo model (PKM) that describes a quantum spin
antiferromagnetically coupled to a conduction electron
bath possessing a pseudogap near its Fermi energy,
characterized by a power-law exponent. Depending on
the coupling strength, the quantum spin is either screened
or remains free in the zero temperature (T) limit. The two
phases are separated by a critical point displaying critical
Kondo destruction, see Fig. 1. The PKM has been invoked
to describe nonmagnetic impurities in the cuprate super-
conductors [31] and point defects in graphene [32]. It
underlies the pseudogap free moment phases occurring in
certain disordered metals [33] and can also be realized in
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double quantum-dot systems [34]. The quantum critical
properties of the PKM in equilibrium have been addressed
in Refs. [35–45]. Our main findings are that the steady-state
dynamic spin susceptibility, the conductance, and the
Kondo-singlet strength, a four-point correlator, reproduce
their equilibrium behavior in the scaling regimes of the
fixed points of the model when expressed in terms of a
fixed-point specific Teff .
The model.—We consider a PKM with a density of

states that vanishes in a power-law fashion with
exponent 0 ≤ r ≤ 1 at their Fermi levels, ρ−c;lðωÞ∼
jωjrΘðD − jωjÞ, with half-bandwidth D. Here, l ¼ L;R
labels the two leads, see Fig. 1(a). In the multichannel
version of the model the spin degree of freedom (S) is
generalized from SUð2Þ to SUðNÞ and the fermionic
excitations (c) of the leads transform under the fundamental
representation of SUðNÞ × SUðMÞ with N spin and M
charge channels. At T ¼ 0 and r < rmax < 1, a critical
point (C) separates a multichannel Kondo (MCK)-screened
phase from a local moment (LM) phase at a critical value
Jc of the exchange coupling J > 0, see Fig. 1(b). The
characterization of the phases and the leading power-law
exponents of observables of the PKM have been obtained
by perturbative renormalization group (RG), large-N
methods, and numerical renormalization group (NRG)
[35–38,40,43]. Within the large-N approach, at T ¼ 0,
scaling arguments are able to predict the critical exponents
of dynamical observables [39,46]. Nonequilibrium steady
states (NESSs) are obtained by applying a time-indepen-
dent bias voltage V¼ðμL−μRÞ=jej, where μl is the chemi-
cal potential of lead l, see Fig. 1(a). As T characterizes the
fermionic reservoirs, it remains well defined even
for V ≠ 0.
A similar setup has been considered in a perturbative

RG-like study adapted to the NESS condition [47]. This
model has also been invoked in a variational study of the
dynamics following a local quench where it was found that
quenches in the Kondo phase thermalize while this is not
the case for quenches across the QCP into the LM regime
[48]. The system is described by the Hamiltonian

H ¼
X

pασl

εplc
†
pασlcpασl þ

1

N

X

ll0

X

α

Jll0S · sα;ll0 ; ð1Þ

where σ ¼ 1;…; N and α ¼ 1;…;M are, respectively,
the SUðNÞ-spin and SUðMÞ-channel indices, l labels
the leads and p is a momentum index. The cotunneling
term [49] in Eq. (1) contains the local operators siα;ll0 ¼
1
nc

P
pp0σσ0c

†
pασlt

i
σσ0c

†
p0ασ0l0 with t the fundamental represen-

tation of SUðNÞ and nc is the number of fermionic
single-particle states. In a totally antisymmetric
representation, one can decompose the spin operator as
Sσσ0 ¼ f†σfσ0 − qδσσ0 , where q is subject to the constraint
Q̂ ¼ P

σf
†
σfσ ¼ qN and the f†σ; fσ0 obey fermionic com-

mutation relations.
We employ a dynamical large-N limit [39,50], suitably

generalized to the Keldysh contour [16,18] while keeping
q ¼ ðQ=NÞ and κ ¼ M=N constant. This results in

Σ>;<
B ðtÞ ¼ iG>;<

f ðtÞG<;>
c ð−tÞ ð2Þ

Σ>;<
f ðtÞ ¼ −iκG>;<

B ðtÞG>;<
c ðtÞ ð3Þ

−iG<
f ð0Þ ¼ q; ð4Þ

where Gf is the pseudofermion propagator and GB is the
propagator of a bosonic Hubbard-Stratonovich decoupling
field. Σf (ΣB) is the proper self-energy of Gf (GB) and is
related to it via the Dyson equation [51]. We assume that
the exchange interaction originates from an Anderson-type
model via a Schrieffer-Wolff transformation, so that a
single coupling constant J ¼ JL þ JR emerges [51]. For
details on the numerics see Ref. [51]. In equilibrium,
our approach yields dynamical scaling functions that
coincide with those obtained from quantum Monte Carlo
calculations [44].
Observables.—A possible order parameter for the tran-

sition from the overscreened Kondo to local-moment phase
is given by limT→0Tχðω ¼ 0; TÞ, where χðω; TÞ is the
Fourier transform of the local (impurity) spin-spin corre-
lation function χðt − t0Þ, see Fig. 2(a). We work on the
Keldysh contour where the lesser and greater components
are defined in the usual way as χ>ðt − t0Þ ¼
−ið1=NÞPahSaðtÞSaðt0Þi with t ∈ γ← and t0 ∈ γ→ and
χ<ðt − t0Þ ¼ −ið1=NÞPahSaðt0ÞSaðtÞi, with t ∈ γ→
and t0 ∈ γ← so that χRðtÞ ¼ ΘðtÞ½χ>ðtÞ − χ<ðtÞ� and
χA ¼ χR þ χ< − χ>. Here, γ→ð←Þ is the forward (backward)
branch of the Keldysh contour, respectively.
We also consider the “singlet-strength” ϕs, defined

through the Kondo term contribution to the total
energy of the system as ð1=NÞPll0

P
c Jll0 hS · sc;ll0 i ¼

−Jκ½ðN2 − 1Þ=N�ϕs [52]. ϕs is a dimensionless quantity,
which possesses a well-defined large-N limit and quantifies
the degree of singlet formation. In terms of the fermionic
fields, it can be written as the local-in-time limit of a
four-point correlator [51]. Its equilibrium properties

FIG. 1 (color online). (a) Sketch of the model: a spin interacts
with two fermionic leads which are characterized by their
respective density of states ρ−c;L=RðωÞ and chemical potentials
μL=R. (b) Phase diagram of the multichannel PKM with gap
exponent r < rmax: AQCP (C) separates the multichannel Kondo
(MCK) fixed point from the (weak-coupling) local moment (LM)
fixed point.
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will be discussed below. The steady-state charge current
passing through each channel is J P ¼ −∂thN̂LðtÞi=M,
where N̂L ¼ P

pασc
†
pασLcpασL is the number of particles

in the left lead. The out-of-equilibrium conditions consid-
ered here respect particle-hole symmetry which implies a
vanishing energy current.
Throughout the Letter we set κ ¼ 0.3, r ¼ 0.2, and

q ¼ 1=2. This results in rmax ¼ 0.412ð4Þ. Our choice of
values for κ and r ensures a finite static spin susceptibility
χ0ðω ¼ 0Þ within the MCK phase as T → 0. We denote the
real (imaginary) part of χRðωÞ by χ0 (χ00).
Thermal steady state.—The equilibrium (V ¼ 0) behav-

ior of χ0ðω ¼ 0; TÞ in the relaxational regime (ω ≪ T) near
the MCK, C, and LM fixed points is shown in Fig. 2(a). For
J < Jc ≃ 0.44D, i.e., in the LM phase, one observes Curie-
like behavior at lowest temperatures χ0ðω ¼ 0; TÞ ∝ T−1.
In the MCK phase (J > Jc and with our choices of κ and r),
the T ¼ 0 susceptibility remains finite. The grey lines in
Fig. 3(b) show the scaling plots of the logarithmic deriva-
tive of χ00ðωÞ for different values of the temperature, i.e.,
∂ lnω ln χ00ðωÞ for the different fixed points. Note that
∂ lnω ln χ00ðωÞ≃ αχ within the scaling region where
χ00ðωÞ ∝ jωjαχ . The values of αχ in the quantum coherent
regime (ω=T ≫ 1) agree with those obtained analytically
from a T ¼ 0 scaling ansatz [46] for the MCK (αχ ≃ 0.087)
and C (αχ ¼ −0.97) fixed points. These results are com-
patible with a dynamical scaling form χ00ðω; TÞ ¼
TαχΦðω=TÞ, in terms of an universal scaling function
ΦðxÞ possessing asymptotic behavior ΦðxÞ∝ x for x≪ 1
and ΦðxÞ ∝ xαχ for x ≫ 1. Thus, the scaling properties
are in line with dynamical ω=T scaling for the C and
MCK fixed points. For the LM fixed point we find αχ ¼ −1
and a scaling form χ00ðωÞ ¼ Tαχ ~Φðω=T1þκÞ, indicative of a
weak-coupling fixed point and absence of hyperscaling.
These results will be further addressed elsewhere [46]. The
singlet-strength ϕs vs J at different T and at V ¼ 0 is shown

in Fig. 2(b). The numerical data at T ≠ 0 suggest that
ϕsðJ; T ¼ 0Þ is a continuous function of J. At the C fixed
point we find that ϕsðJ; TÞ as a function of J crosses for
different values of T (for sufficiently low T).
Nonthermal steady states.—We consider a non-

equilibrium setup where the two leads, initially decoupled
from the impurity (for t < t0), are held at chemical
potentials μL ¼ −μR ¼ jejV=2 (jej ¼ 1 in the following).
At t ¼ t0 the coupling between the leads and the impurity is
turned on. A steady state is reached by sending t0 → −∞
so that any transient behavior will already have faded away
at (finite) time t. The NESS fluctuation-dissipation ratio
(FDR) for a dynamical observable Aðt; t0Þ ¼ Aðt − t0Þ is
defined through FDRAðωÞ ¼ ½A>ðωÞ þ A<ðωÞ�=½A>ðωÞ−
A<ðωÞ�, where A>=< are the Fourier transforms of the
greater/lesser components of A. At equilibrium, the
fluctuation-dissipation theorem implies FDRAðωÞ ¼
tanh ðβω=2Þζ uniquely [with ζ ¼ �1 for fermionic (þ)
and bosonic (−) operators]. For a generic out-of-
equilibrium system, the functional form of the FDR differs
from the equilibrium one. A frequency-dependent “effec-
tive temperature,” 1=βAeffðωÞ, for the observable A can be
defined by requiring that tanh ½βAeffðωÞω=2�ζ ¼ FDRAðωÞ
[27,53]. Following Refs. [18,21,26] we define Teff via
FDRχ through its asymptotic low-frequency behavior
T−1
eff ¼ limω→0β

χ
effðωÞ. In equilibrium Teff ¼ T. On the

other hand, a linear-in-V decoherence rate in the non-
equilibrium relaxational regime near an interacting QCP is
signaled by ω=V scaling [16]. In this case and at T ¼ 0 one
expects Teff ¼ cV, where c characterizes the underlying
fixed point. We thus analyze T=Teff vs V=T. Figure 2(c)
shows the resulting T=Teff as a function of V=T for the
different fixed points computed for different values of V

FIG. 3 (color online). Scaling of observables with Teff at
different fixed points for the values of V as in Fig. 2(d):
(a) χ0ð0Þ−1 vs Teff ; (b) ∂ lnω ln χ00ðωÞ vs ω=Teff ; (c) ϕs vs Teff .
For each fixed point, the equilibrium scaling form (grey curves) is
compared with the same quantity under nonequilibrium con-
ditions and T substituted by Teff.

FIG. 2 (color online). (a) χ0ð0Þ−1 vs J for different T. (b) ϕs vs J
for different T. The T ¼ 0 curve is approached from below
in the MCK and from above in the LM phases. (c) Scaling T=Teff
vs V=T at fixed points LM, C, and MCK: Teff ∼ V for
V ≫ T. (d) FDR−1

χ ðωÞ vs ω=Teff near fixed point C, shown
for V=D ¼ 10−2; 10−3; 10−4; 10−5; 10−6. The grey line is
FDR−1ðωÞ ¼ tanhðβω=2Þ.
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and T. In the nonlinear regime, the scaling collapse for
T=Teff implies Teff ¼ cV, where 1=c is the amplitude of the
scaling curve in the nonlinear regime. A comparison of
FDR−1

χ with the equilibrium result for fixed point (C) is
shown in Fig. 2(d). Even for the LM fixed point, where
hyperscaling is violated, Teff ∼ V holds for V ≫ T, see
Fig. 2(c), top panel. It is, however, important to realize that
the properties we see in terms of Teff are a property of the
flow towards the LM fixed point. Far from equilibrium and
outside any scaling regime, χ is a function of ω, T, and V
but near a fixed point χðω; T; VÞ develops a scaling form in
terms of a combination of ω, T, and V. This then raises the
question how Teff enters the scaling function and leads us to
a remarkable result, see Figs. 3(b) and 3(c): The nonthermal
steady-state scaling function of χ ¼ χðω; T; VÞ when
scaled in terms of Teff recovers the equilibrium scaling
function of that particular fixed point with Teff replacing T.
This not only turns out to be true for χ at each of the fixed
points of the model but also holds for ϕs, a higher-order
correlation function. We first consider the static suscep-
tibility. Figure 3(a) shows the equilibrium scaling forms of
χ0ð0Þ−1 as a function of Teff for different values of T and V
for the LM, C, and MCK fixed points. The color coding
reflects the values of T of the system. The equilibrium form
(grey lines) is recovered even for Teff=T ≫ 1.
A similar result can be obtained at finite ω: Fig. 3(b)

shows the log derivative ∂ lnω ln χ00ðωÞ as a function of
ω=Teff for different values of T and V for the LM, C, and
MCK fixed points. These should be compared with the
equilibrium results, the underlying grey lines: The equi-
librium scaling form is recovered by replacing T by Teff,
both for ω ≪ Teff and ω ≫ Teff [54]. Note that Teff is
defined from the FDR of χ in the limitω=T → 0. Therefore,
the fact that the equilibrium scaling forms of χ0ð0Þ and
χ00ðωÞ are reproduced for Teff=T ≫ 1 and ω=Teff ≫ 1,
respectively, is remarkable. Figure 3(c) depicts ϕs as a
function of Teff for different values of T and V. Again, the
equilibrium scaling behavior (gray curves) is reproduced.
Unlike χ and ϕs, the conductance G depends on both

pseudoparticle propagators Gf and GB. One thus may
wonder if Teff can have any meaning for G. In Figs. 4(a)
and 4(b) we show the conductance per channel G ¼ J P=V
vs T and V, respectively. In the linear response regime
V; T ≪ TKðJÞ of the MCK phase, the current is propor-
tional to the applied voltage J P ¼ G0V. Outside of the
scaling regime, i.e., for V; T ≫ TKðJÞ, G drops rapidly as
V or T increase. The linear and nonlinear current-voltage
characteristics display power-law behavior as T; V → 0
[16,18]. Near C, i.e., for J ¼ Jc, the relation between J P
and V is still linear, (J P ¼ GcV); however, the critical
conductanceGc is much smaller thanG0. Figure 4(c) shows
G vs Teff for different values of T and V for the LM, C, and
MCK fixed points. The grey curves are obtained by varying
T at fixed V for the lowest value of V considered in our
study, i.e., Vmin ¼ 10−8D. The temperature dependence of

the linear response conductance is reproduced at all fixed
points when the nonlinear conductance is taken as a
function of Teff . This is true even for values of V several
orders of magnitude larger than Vmin.
In conclusion, we have addressed the steady-state

dynamics near unconventional quantum criticality. We
found that in the scaling regime of all the fixed points
considered, all observables studied (χ;ϕs; G) scale in terms
of the same but fixed point specific effective temperature
Teff . The local spin-spin correlation function χ and the
singlet-strength ϕs assume their equilibrium scaling forms
even far from equilibrium when scaled in terms of Teff , i.e.,
Teff replacing T. A similar result relates the linear and
nonlinear conductance. We note that in the (noninteracting)
pseudogap resonant level model such behavior is absent
[46]. It has been shown that the nonequilibrium current
noise near quantum criticality in models possessing gravity
duals appears thermal [55,56]. Our results imply that
similar results hold for a larger class of quantum critical
systems and quantities. The results reported here may thus
help in identifying universality classes of unconventional
quantum criticality. To what extent our results rely on
locality needs to be further investigated.
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