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We introduce a simple protocol for verifiable measurement-only blind quantum computing. Alice, a
client, can perform only single-qubit measurements, whereas Bob, a server, can generate and store
entangled many-qubit states. Bob generates copies of a graph state, which is a universal resource state for
measurement-based quantum computing, and sends Alice each qubit of them one by one. Alice adaptively
measures each qubit according to her program. If Bob is honest, he generates the correct graph state, and,
therefore, Alice can obtain the correct computation result. Regarding the security, whatever Bob does, Bob
cannot get any information about Alice’s computation because of the no-signaling principle. Furthermore,
malicious Bob does not necessarily send the copies of the correct graph state, but Alice can check the
correctness of Bob’s state by directly verifying the stabilizers of some copies.
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Blind quantum computing is a quantum cryptographic
protocol that enables Alice (a client), who does not have
any sophisticated quantum technology, to delegate her
quantum computing to Bob (a server), who has a suffi-
ciently powerful quantum computer, without leaking any
her privacy. The first protocol of blind quantum computing
that uses the measurement-based quantum computing [1]
was proposed by Broadbent et al. [2], and a proof-of-
principle experiment was demonstrated with photonic
qubits [3]. In the protocol of Ref. [2], Alice generates
many randomly rotated single-qubit states and sends them
to Bob. Bob generates a universal resource state of the
measurement-based quantum computing by applying
entangling gates on qubits sent from Alice. Then, they
do two-way classical communications: Alice instructs Bob
how to measure each qubit, and Bob returns the measure-
ment results so that Alice can perform the feed-forward
calculations. It was shown in Ref. [2] that if Bob is honest,
Alice can obtain the correct quantum computing result
(which we call the correctness) and that whatever evil Bob
does, he cannot learn anything about Alice’s input, output,
and program (which we call the blindness) [4]. (See, also,
Ref. [5] for a precise proof of the security.) Inspired by the
seminal result, plenty of improvements have been done
[6–20]. For example, it was shown that instead of single-
qubit state generation, single-qubit measurement [6]
or coherent state generation [7] are sufficient for Alice.
In the protocol of Ref. [6], so called the measurement-only
blind quantum computing, Bob generates a universal
resource state of measurement-based quantum computing
[Fig. 1(a)] and sends each qubit of the resource state one by
one to Alice [Fig. 1(b)]. Alice adaptively measures each
qubit according to her program [Fig. 1(b)]. Since adaptive
single-qubit measurements on certain states are universal

[1,21–23], Alice with only single-qubit measurement
ability can perform universal quantum computing if Bob
prepares the correct resource state. Furthermore, since this
protocol is a one-way quantum communication from Bob
to Alice, the blindness is guaranteed by the no-signaling
principle [6]. Here, the no-signaling principle is one of the
most fundamental assumptions in physics, which says that
if Alice and Bob share a system, she cannot transmit any of
her messages to Bob whatever they do on their systems.
Quantum physics respects the no-signaling principle.
In addition to the correctness and the blindness, the

verifiability is another important requirement for blind
quantum computing. The verifiability means that Alice
can check the correctness of Bob’s computation. Although
the blindness guarantees that Alice’s privacy is kept secret
against malicious Bob, it does not guarantee the correctness
of the computation result with malicious Bob: Bob cannot
learn Alice’s secret, but he can mess up the computation.
In order to avoid being palmed off a wrong result, Alice
needs some statistical test to verify the correctness of Bob’s
computing. There are several protocols that enable verifi-
able blind quantum computing [8–11,24,25]. Some of
them [9,24,25] elegantly achieve the completely classical
client, but a trade-off is the requirement of more than two
servers who do not communicate with each other. Although

FIG. 1. The measurement-only blind quantum computing.
(a) Bob generates a resource state. (b) Bob sends Alice each
qubit of the resource state one by one. Alice adaptively measures
each qubit.
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pursuing the completely classical client is an important
direction, in particular, for the goal of constructing an
interactive proof of Bounded Quantum Polytime, where the
assumption of noncommunicating multiprovers is natural,
in this Letter we restrict ourselves to the single-server setup
assuming some minimum quantum technologies for the
client, since in the context of blind quantum computing,
assuming some minimum quantum technologies for the
client is more realistic than to assume that the client can
verify that remote servers are not communicating with each
other. These results also achieve the device independence.
Although our protocol assumes the correctness of meas-
urement devices, it enables us to derive a more practical
bound suitable for experiments. The protocols in
Refs. [8,10,11] need only a single server by assuming
some minimum quantum technologies, which are available
in today’s laboratories, for the client. (The protocol of
Ref. [10] requires single-qubit state generation, and those
of Refs. [8,11] require single-qubit measurements for the
client.) The idea of the verification in the protocols of
Refs. [8–11] is to use trap qubits: Alice secretly hides trap
qubits in the resource state, and any disturbance of a trap
signals Bob’s dishonesty [8–11]. An experimental demon-
stration of the idea was done with photonic qubits [26].
In this Letter, we propose another protocol for verifiable

measurement-only blind quantum computing. The blind-
ness is again guaranteed by the no-signaling principle like
Ref. [6]. The verifiability is, on the other hand, achieved
in a more straightforward way: instead of hiding traps,
Alice directly checks whether the state sent from Bob
is correct or not by testing stabilizers [27]. Alice asks
Bob to generate 2kþ 1 copies jGi⊗2kþ1 of the graph state
jGi, where jGi is an n-qubit graph state and k ¼ polyðnÞ.
The graph state jGi is defined by jGi≡ð⊗

e∈E
CZeÞjþi⊗n,

where jþi≡1=
ffiffiffi
2

p ðj0iþ j1iÞ, E is the set of edges of G,
and CZe is the CONTROLLED-Z gate CZ≡ j0ih0j ⊗ I þ
j1ih1j ⊗ Z acting on the pair of vertices sharing the edge e.
The graph state jGi has the stabilizers Xj ⊗

i∈NðjÞ
Zi, for

j ¼ 1; 2;…; n, where NðjÞ is the set of the vertices
connected to j. Alice uses randomly chosen 2k copies of
jGi⊗2kþ1 to check stabilizers and the rest of it for her
computation. If Bob is honest, he generates jGi⊗2kþ1, and,
in this case, we will show that she passes the test with
probability 1. If Bob is evil, on the other hand, he might
generate another nð2kþ 1Þ-qubit state. However, we will
show that if she passes the test, the closeness of the single
copy to the correct graph state jGi is guaranteed with a
sufficiently small significance level. Any graph state can
be used for our protocol as long as the corresponding
graph G is bipartite. Therefore, for example, Alice can
perform the fault-tolerant topological measurement-based
quantum computing [21] by taking jGi as the Raussendorf-
Harrington-Goyal lattice [21] [Fig. 2(a)].

Note that there are several proposals for testing quantum
gate operations [28,29], but testing quantum circuit models
assumes the identical and independent properties of each
gate and suffers from the scalability and complexity of
the analysis. On the other hand, our result in the present
Letter (and Ref. [25]) demonstrate that testing quantum
computing becomes much easier if we consider a meas-
urement-based quantum computing model, which is a new
interesting advantage of the measurement-based quantum
computing model over the circuit model. For more details
about the relations between our result and previous works,
see the first section of the Supplemental Material [30].
Protocol.—Our protocol runs as follows: (1) Honest Bob

generates jGi⊗2kþ1, where jGi is an n-qubit graph state on
a bipartite graph G, whose vertices are divided into two
disjoint sets W and B [Figs. 2(a) and 2(b)]. Bob sends
each qubit of it one by one to Alice. Evil Bob can generate
any nð2kþ 1Þ-qubit state ρ instead of jGi⊗2kþ1. (2) Alice
divides 2kþ 1 blocks of n qubits into three groups by
random choice [Fig. 2(c)]. The first group consists of k
blocks of n qubits. The second group consists of k blocks of
n qubits. The third group consists of a single block of n
qubits. (3) Alice uses the third group for her computation.
Other blocks are used for the test, which will be explained
later [Fig. 2(c)]. (4) If Alice passes the test, she accepts the
result of the computation performed on the third group.
For each block of the first and second groups, Alice

performs the following test: (1) For each block of the first
group, Alice measures qubits ofW in the Z basis and qubits
of B in the X basis [Fig. 3(a)]. (2) For each block of
the second group, Alice measures qubits of B in the Z basis
and qubits of W in the X basis [Fig. 3(b)]. (3) If the
measurement outcomes in the X basis coincide with the
values predicted from the outcomes in the Z basis (in terms
of the stabilizer relations), then the test is passed. If any

FIG. 2. (a) The RHG lattice. (b) An example of bipartite graphs:
the two-dimensional square lattice. Black and white colors
indicate the bipartitions B and W, respectively. (c) An example
for n ¼ 3, k ¼ 2. Two blocks go to the first group, and the other
two blocks go to the second group. The left block goes to the
third group.
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outcome in the X basis that violates the stabilizer relations
is obtained, Alice rejects.
Analysis.—Let us analyze the correctness, blindness, and

verifiability of our protocol. First, our protocol is a one-way
quantum communication from Bob to Alice, and, therefore,
the blindness is guaranteed by the no-signaling principle
as in the protocol of Ref. [6]. Second, it is obvious that if
ρ ¼ jGihGj⊗2kþ1, then Alice passes the test with proba-
bility 1. Therefore, if Bob is honest, Alice passes the test
with probability 1, and she obtains the correct computation
result on the third group. Hence, the correctness is satisfied.
Finally, to study the verifiability, we consider the following
theorem:
Theorem 1: Assume that α > ½1=ð2kþ 1Þ�. If the test is

passed, with significance level α, we can guarantee that the
resultant state σ of the third group satisfies

hGjσjGi ≥ 1 −
1

αð2kþ 1Þ : ð1Þ

[Note that the significance level is the maximum passing
probability when malicious Bob sends incorrect states
so that the resultant state σ does not satisfy Eq. (1)
[39].] The proof of the theorem is given below and in the
Supplemental Material [30]. From the theorem and the
relation between the fidelity and trace norm [40][(6.106)],
we can conclude the verifiability: if Alice passes the test,
she can guarantee

jTrðCσÞ − TrðCjGihGjÞj ≤ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð2kþ 1Þp

for any POVM C with the significance level α. If we take
α ¼ ½1=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kþ 1
p Þ�, for example, the left-hand side of the

above inequality is ½1=ð2kþ 1Þ1=4� → 0 if k → ∞, and,
therefore, the verifiability is satisfied. Note that the lower
bound, α > ½1=ð2kþ 1Þ�, of the significance level α is
tight, since if Bob generates 2k copies of the correct state
jGi and a single copy of a wrong state, Bob can fool
Alice with probability 1=ð2kþ 1Þ, which corresponds to
α ¼ ½1=ð2kþ 1Þ�.
Proof of theorem.—The proof of the theorem is based on

several interesting insights: (1) By considering an appro-
priate subspace, we can reduce the problem to the test of a
maximally entangled state. (2) For the test of a maximally

entangled state, verifications of coincidences of X meas-
urement results with Z measurement results are sufficient.
Furthermore, since we are interested in the fidelity between
the given state and a maximally entangled state, we can
consider, without loss of generality, the discretely twirled
version of the given state, which drastically simplifies the
problem [41]. (3) Finally, since we check the coincidence
or discrepancy of the measurement results between two
parties of the given bipartite cut, we have only to consider a
distribution on (0,0), (0,1), (1,0), and (1,1) for each block,
and, therefore, we can reduce the problem to a classical
hypothesis testing.
Let us explain the first point. Employing suitable

classical data conversions, we can assume the following.
The systems HB and HW are written as KB ⊗ K0

B and
KW ⊗ K0

W by using an n0B-qubit system KB and an n0W-
qubit system KW , respectively. We denote the eigenstate
corresponding to the eigenvalue all 0 of X’s inK0

B by jþiB0,
which is the graph state with isolated sites with no edge.
Similarly, we define jþiW0 . So, we find that the systemsKB
and KW have the same dimension, i.e., n0B ¼ n0W . Let jG0i
be the graph state on KB ⊗ KW whose graph is composed
of isolated edges. The true state is given as the state
jG0i ⊗ jþiB0 ⊗ jþiW0 . In this way, we can reduce the
problem to that of the maximally entangled state. Note that
Alice’s measurements on HB and HW are replaced by
on KB and KW , respectively. Applying the measurement
based on Alice's original bases, Alice can realize the
measurement based on above modified bases. The detail
of this discussion is given in Sec. II of the Supplemental
Material [30].
Now let us explain the second point. We focus on the

Hilbert space ðKB ⊗ KWÞ⊗ð2kþ1Þ. Since the three groups are
randomly chosen, the state ρ is permutation invariant. Let us

denote elements of F
n0B
2 by x ¼ ðx1;…; xn0BÞ, etc. We define

operators Xx ≡ Xx1 ⊗ � � � ⊗ X
xn0

B , Zz ≡ Zz1 ⊗ � � � ⊗ Z
zn0

B ,
on ðC2Þ⊗n0B , which satisfy

Xx
B ⊗ Z−x

W jG0i ¼ jG0i; Xx
W ⊗ Z−x

B jG0i ¼ jG0i: ð2Þ
In the following, we regard Xx

B, Z
z
B as operators on KB and

Xx
W , Z

z
W as operators on KW . Here, we distinguish x and −x

so that we can easily extend our analysis to the qudit case.
Furthermore, for x ¼ ðx1;…; x2kþ1Þ ∈ ðFn0B

2 Þ2kþ1 and

z ¼ ðz1;…; z2kþ1Þ ∈ ðFn0B
2 Þ2kþ1, using the operator Wx;z

B ≡
Xx
BZ

z
B on KB, we defineW

x;z
B ≡Wx1;z1

B ⊗ � � � ⊗ Wx2kþ1;z2kþ1

B

on K⊗2kþ1
B . Also, we define Wx;z

W on KW , and Wx;z
W

on K⊗2kþ1
W , in the same way. Equation (2) implies that

Wx;z
B ⊗ W−z;−x

W jG0i⊗2kþ1 ¼ jG0i⊗2kþ1. Hence,

Tr½ðWx;z
B ⊗ W−z;−x

W Þ†ρðWx;z
B ⊗ W−z;−x

W ÞjG0ihG0j⊗2kþ1�
¼ TrðρjG0ihG0j⊗2kþ1Þ:

Thus, the discrete-twirled state

FIG. 3. An example for the two-dimensional square lattice. The
measurement pattern for the first group (a) and the second
group (b).
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ρ̄≡X

x;z

2−2n
0
Bð2kþ1ÞðWx;z

B ⊗ W−z;−x
W Þ†ρðWx;z

B ⊗ W−z;−x
W Þ

satisfies Trðρ̄jG0ihG0j⊗2kþ1Þ ¼ TrðρjG0ihG0j⊗2kþ1Þ [41].
Also, we have

Tr1½ðTr2;3ρ̄ÞjG0ihG0j⊗k� ¼ Tr1½ðTr2;3ρÞjG0ihG0j⊗k�;
Tr2½ðTr1;3ρ̄ÞjG0ihG0j⊗k� ¼ Tr2½ðTr1;3ρÞjG0ihG0j⊗k�;
Tr3½ðTr1;2ρ̄ÞjG0ihG0j� ¼ Tr3½ðTr1;2ρÞjG0ihG0j�:

Therefore, we have only to consider the discretely twirled
version of ρ. Note that the upper subscript of x and z
expresses the choice of group, and the lower subscript
of x and z expresses the site of the modified graph.
Finally, let us explain the third point. Since ðWx;z

B ⊗
W−z;−x

W Þρ̄ðWx;z
B ⊗ W−z;−x

W Þ† ¼ ρ̄ and ρ is permutation
invariant, the state ρ̄ is written with a permutation-invariant

distribution P on F
2n0Bð2kþ1Þ
2 as [41]

ρ̄ ¼
X

x;z

Pðx; zÞWx;z
B jG0⊗2kþ1ihG0⊗2kþ1jðWx;z

B Þ†:

Then, we define the function f from ðFn0B
2 Þ2ð2kþ1Þ to

ðf0; 1g2Þð2kþ1Þ as f∶ ðx; zÞ↦ðs1; t1Þ;…; ðs2kþ1; t2kþ1Þ,
where si≔f 0 if xi ¼ 0

1 if xi ≠ 0
and ti≔f 0 if zi ¼ 0

1 if zi ≠ 0:
Here, xi

and zi are elements of F
n0B
2 . So, 0 in the above conditions

expresses the zero vector in F
n0B
2 although si is an element

of F2.
We introduce the distributions P̂(ðs1; t1Þ;…;

ðs2kþ1; t2kþ1Þ) on ðf0; 1g2Þð2kþ1Þ as P̂≔P∘f−1.
Once Bob’s operation is given, the values s1;…; s2kþ1,

t1;…; t2kþ1 are given as random variables although half
of s1;…; s2k, t1;…; t2k can be observed. To employ the
notation of probability theory, we express them using
the capital letters as S1;…; S2kþ1, T1;…; T2kþ1. Hence,
P̂ðSi ¼ 0Þ expresses the probability that the ith measure-
ment outcome of the X basis of the B system coincides with
the prediction by the ith measurement outcome of the Z
basis of theW system. So, to show Theorem 1, it is enough
to show the following theorem. Similarly, P̂ðTkþi ¼ 0Þ
expresses the probability that the kþ ith measurement
outcome of the X basis of the W system coincides with the
prediction by the kþ ith measurement outcome of the Z
basis of the B system. So, to show Theorem 1, it is enough
to show the following theorem.
Theorem 2: Assume that α > ½1=ð2kþ 1Þ�. When the

distribution P̂ satisfies

P̂ðS2kþ1 ¼ T2kþ1 ¼ 0jSj ¼ Tkþj ¼ 0 for 1 ≤ j ≤ kÞ

≥ 1 −
1

αð2kþ 1Þ ;

the probability P̂ðSj ¼ Tkþj ¼ 0 for 1 ≤ j ≤ kÞ is upper
bounded by α.
In this way, we have reduced the problem to the classical

hypothesis testing. The proof of Theorem 2 is given in the
Supplemental Material [30].
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