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Coherence and correlations represent two related properties of a compound system. The system can be,
for instance, the polarization of a photon, which forms part of a polarization-entangled two-photon state,
or the spatial shape of a coherent beam, where each spatial mode bears different polarizations. Whereas a
local unitary transformation of the system does not affect its coherence, global unitary transformations
modifying both the system and its surroundings can enhance its coherence, transforming mutual
correlations into coherence. The question naturally arises of what is the best measure that quantifies
the correlations that can be turned into coherence, and how much coherence can be extracted. We answer
both questions, and illustrate its application for some typical simple systems, with the aim at illuminating
the general concept of enhancing coherence by modifying correlations.

DOI: 10.1103/PhysRevLett.115.220501 PACS numbers: 03.67.Mn, 03.65.Ud, 42.50.Ar, 42.50.Dv

Introduction.—Coherence is one of the most important
concepts needed to describe the characteristics of a stream
of photons [1,2], where it allows us to characterize the
interference capability of interacting fields. However its use
is far more general as it plays a striking role in a whole
range of physical, chemical, and biological phenomena [3].
Measures of coherence can be implemented using classical
and quantum ideas, which lead to the question of in which
sense quantum coherence might deviate from classical
coherence phenomena [4], and to the evaluation of mea-
sures of coherence [5–7].
Commonly used coherence measures consider a physical

system as a whole, omitting its structure. The knowledge of
the internal distribution of coherence between subsystems
and their correlations becomes necessary for predicting the
evolution (migration) of coherence in the studied system.
The evolution of a twin beam from the near field into the far
field represents a typical example occurring in nature [8].
The creation of entangled states by merging the initially
separable incoherent and coherent states serves as another
example [7]. Or, in quantum computing the controlled-
NOT gate entangles (disentangles) two-qubit states [9,10],
at the expense (in favor) of coherence. Many quantum
metrology and communication applications benefit from
correlations of entangled photon pairs originating in
spontaneous parametric down-conversion [11–13]. Even
separable states of photon pairs, i.e., states with suppressed
correlations, are very useful, e.g., in the heralded single
photon sources [14,15]. For all of these, and many others,
examples the understanding of common evolution of
coherence and correlations is crucial.
The Clauser-Horne-Shimony-Holt (CHSH) Bell’s-like

inequality [16–18] has been usually considered to quantify
nonclassical correlations present between physically sep-
arated photons that are entangled and so they can violate the

bound set by the inequality. However, correlations of a
similar nature can also exist when considering different
degrees of freedom of a single system [19,20]. The CHSH
inequality can also be violated when considering intra-
beam correlations between different degrees of freedom
of intense beams, coherent or not [21]. This, sometimes
referred to as nonquantum entanglement, or inseparability
of degrees of freedom, has been considered [22,23] as a tool
to shed new light into certain characteristics of classical
fields, by applying techniques usually restricted to a
quantum scenario.
When the violation of the CHSH inequality between

subsystems and the degree of first-order coherence, which
characterizes the internal coherence of a physical subsys-
tem [1], are combined together, it is possible to define a
measure that encompasses all coherences and correlations
in the system. This measure has been experimentally
examined by Kagalwala et al. [24]. One fundamental
problem of their formulation is that it varies under global
unitary transformations. This means that, from this point
of view, the amount of coherence in the system can be
changed.
This behavior has several general consequences for any

partially coherent (mixed) state. First, the main point is that
the coherence of each subsystem can be increased by means
of a suitable unitary transformation affecting the whole
system. So, the hidden coherence stored in the correlations
between two subsystems is made available. Second, for
pure states, the roles of the degree of entanglement between
subsystems, quantified by the concurrence [25,26], and the
maximum violation of the CHSH inequality (Bmax) [18] are
interchangeable. However, this is not true for mixed states,
where the maximal violation can take place for states that
are not maximally entangled [27]. This raises the question
of what is the appropriate measure to quantify hidden
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coherence unveiled by global unitary transformations: the
degree of entanglement (concurrence) or Bmax.
In this Letter, we solve these two puzzles. First, given a

generally mixed state, or equivalently a partially coherent
light beam, we determine what is the maximum and
minimum first-order coherence the subsystems can show
under global unitary transformations. This will reveal how
much hidden coherence is present in the correlations
between subsystems. Second, we will determine if these
maximal and minimal coherences are related to states with
the maximal (minimal) degree of entanglement, or maximal
or minimal violation of the CHSH inequality. This will
solve the question of which of the two measures is the
appropriate one to quantify hidden coherence. Our main
results are expressed in two theorems valid for any mixed
two-qubit quantum state, and their implication is illustrated
by applying the theorems to four well-known classes of
quantum states.
We restrict our attention to coherence manipulations by a

general global unitary transformation. Experimentally, they
can be implemented by various logical gates [13,28,29].
The coherence limits can be also viewed as the maximal
coherence that a logical gate can provide for a given state,
which is related to the entanglement power of a unitary
operation [30].
General considerations.—Let us consider a 2 × 2 dimen-

sional quantum state, ρ̂, composed of subsystems A and B.
The state ρ̂ can be generally written (spectral decomposi-
tion) as ρ̂ ¼ VÊV† [13], where Ê is a diagonal matrix with
eigenvalues that satisfy

P
iλi ¼ 1 and λ1 ≥ λ2 ≥ λ3 ≥ λ4.

The matrix V contains the corresponding eigenvectors.
Each subsystem is characterized by the corresponding
density matrix, ρ̂A and ρ̂B. The degree of first-
order coherence of each subsystem is given DA;B ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tr½ρ̂2A;B� − 1

q
[2]. We introduce here a measure of

coherence for both subsystems when they are considered
independentlyD2 ¼ ðD2

A þD2
BÞ=2. When both subsystems

are coherent, one hasD ¼ 1, while only if both subsystems
show no coherence, D ¼ 0.
Minimum first-order coherence.—There exists a unitary

transformation U that when applied to ρ̂ generates a new
state ρ̂0 ¼ Uρ̂U†, so that the coherence D vanishes and the
violation of the CHSH is maximized with value [18,31]

Bmax ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1 − λ4Þ2 þ ðλ2 − λ3Þ2

q
: ð1Þ

The unitary transformation has the form U ¼ MV†, where

M ¼ 1ffiffiffi
2

p

0
BBB@

1 1 0 0

0 0 1 1

0 0 1 −1
1 −1 0 0

1
CCCA: ð2Þ

It is straightforward to show (see Supplemental Material
[32]) that after the transformation U ¼ MV†, DA ¼
DB ¼ 0, therefore D ¼ Dmin ¼ 0. One can always achieve
no coherence for both subsystems. Therefore, the state with
minimal coherence is the state that provides maximal
violation of the CHSH inequality and it corresponds to
the so-called Bell diagonal state [31].
The degree of entanglement (concurrence) of Bell diago-

nal states is CBD ¼ max f0; 2λ1 − 1g [31]. The maximum
concurrence that can be achieved by a unitary operation
applied on ρ̂ is Cmax ¼ max f0; λ1 − λ3 − 2

ffiffiffiffiffiffiffiffiffi
λ2λ4

p g [37].
As we will see in example I, CBD ≤ Cmax can happen
for mixed states, which highlights the preference for using
Bmax over the concurrence for quantifying the coherence
available for each subsystem.
Maximum first-order coherence.—There exists a unitary

transformation U that when applied to an arbitrary state ρ̂
generates a new state ρ̂0 ¼ Uρ̂U† that maximizes the
coherence D with value

D2
max ¼ ðλ1 − λ4Þ2 þ ðλ2 − λ3Þ2 ð3Þ

and yields a violation of CHSH that is minimal, with value

Bmax ¼ jλ1 − λ2 − λ3 þ λ4j: ð4Þ

The unitary transformation U has the form U ¼ V†.
The resulting state is a diagonal separable state, as it is

shown in the Supplemental Material [32].
Dmax can be called the degree of available coherence,

since it represents the maximum first-order coherence that
can be unveiled under a global unitary transformation.
As we will show in example I below, correlations can
be a source of coherence for a subsystem even when the
CHSH inequality is not violated, i.e., Bmax ≤ 2, and
therefore the state is not entangled. Importantly, Dmax
is associated to a state with the minimum violation of the
CHSH inequality, highlighting again the outstanding role
of Bmax over concurrence when considering the maxi-
mum and minimum values of the degree of coherence
available.
We will now consider four examples where we apply the

results mentioned above.
Example I: Maximally nonlocal mixed state (MNMS).—

In a nonlinear process designed to generate entanglement
in polarization [38,39], the state generated at the output
of the nonlinear crystal can be generally written in the
computational basis fj00i; j01i; j10i; j11ig as [27,40]

ρ̂MNMS ¼

0
BBBB@

1=2 0 0 ϵ=2

0 0 0 0

0 0 0 0

ϵ=2 0 0 1=2

1
CCCCA where ϵ ∈ h0; 1i: ð5Þ
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The purity of the state is P ¼ Tr½ρ̂2MNMS� ¼ ð1þ ϵ2Þ=2.
The spectral representation of this state writes ρ̂MNMS ¼
1=2ð1þ ϵÞjΦþihΦþj þ 1=2ð1 − ϵÞjΦ−ihΦ−j. This state is a
Bell diagonal state, so it produces a maximal violation of
the CHSH inequality. For each value of ϵ, the state ρ̂MNMS
can be transformed using unitary operations to a new state
ρ̂0MNMS with new values of D2 [see Fig. 1(a)] and Bmax [see
Fig. 1(b)]. The grey areas in the figures show all possible
values of D2 and Bmax. In all cases presented here, and
shown in Figs. 1–2, we performed extensive numerical
simulations [41] generating 106 randomly generated uni-
tary operations for each value of parameters, to check all
of our predictions.
All of these values lie in intervals limited by states with

minimal and maximal coherence. The state already yields
minimal coherence (DA ¼ DB ¼ 0) and maximal violation
of the CHSH inequality, as given by Eq. (1) [dotted-blue
lines in Figs. 1(a) and 1(b)]

DA ¼ DB ¼ 0; Bmax ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2

p
: ð6Þ

The case of maximal coherence and minimal violation of
the CHSH inequality is given by Eqs. (3) and (4) [dashed-
red lines in Figs. 1(a) and 1(b)]

D2
max ¼

1þ ϵ2

2
; Bmax ¼ 2jϵj: ð7Þ

The degree of entanglement of the quantum state with
minimum first-order coherence (DA ¼ DB ¼ 0), which

corresponds to the maximal violation of the CHSH inequal-
ity, is CBD ¼ ϵ. However, the maximum entanglement
that can be achieved with a unitary operation is
Cmax ¼ ð1þ ϵÞ=2. Therefore CBD < Cmax. This shows
the relevant role Bmax over the concurrence. The state
which achieves minimal first-order coherence for a sub-
system is also the state that maximally violates the CHSH
inequality, but not the state that achieves maximum
entanglement.
Example II: Maximally entangled mixed state

(MEMS).—This state is defined as [42,43]

ρ̂MEMS¼

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

0
BBB@
1=3 0 0 γ=2

0 1=3 0 0

0 0 0 0

γ=2 0 0 1=3

1
CCCA for 0≤ γ≤ 2

3

0
BBB@
γ=2 0 0 γ=2

0 1− γ 0 0

0 0 0 0

γ=2 0 0 γ=2

1
CCCA for 2

3
≤ γ≤1.

ð8Þ

It maximizes the value of the concurrence for a given value
of the purity. We have chosen the phases to be zero for the
sake of simplicity. The purity is equal to P ¼ 1

3
þ γ2=2 for

0 ≤ γ ≤ 2
3
and P ¼ γ2 þ ð1 − γÞ2 for 2

3
≤ γ ≤ 1. When the

state is transformed to the new state using unitary oper-
ations [see Figs. 1(c) and 1(d)], we find that for 0 ≤ γ ≤ 2

3

the minimal coherence and maximal violation of the CHSH
are [dotted-blue lines in Figs. 1(c) and 1(d)]

DA¼DB¼ 0; Bmax¼ 2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

4
þ
�
1

3
þ γ

2

�
2

s
; ð9Þ

and the maximal coherence and minimal violation of the
CHSH are [dashed-red lines in Figs. 1(c) and 1(d)]

D2
max ¼

γ2

4
þ
�
1

3
þ γ

2

�
2

; Bmax ¼ 2

����γ − 1

3

����: ð10Þ

For 2
3
≤ γ ≤ 1, these limits are [dotted-blue and dashed-red

lines in Figs. 1(c) and 1(d)]

DA ¼ DB ¼ 0; Bmax ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ ð1 − γÞ2

q
; ð11Þ

and

D2
max ¼ γ2 þ ð1 − γÞ2; Bmax ¼ 2j2γ − 1j: ð12Þ

The green lines in Figs. 1(c) and 1(d) show the actual value
of D2 and Bmax, prior to the application of any unitary
transformation.
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FIG. 1 (color online). Coherence (D2) and maximal violation of
the CHSH inequality (Bmax) for (a) and (b): example I (ρ̂MNMS),
and (c) and (d): example II (ρ̂MEMS). Green lines depict the values
of the original state, prior to any unitary transformation. The
maximal coherence and minimal violation of the CHSH inequal-
ity are marked by dashed-red lines, and the minimal coherence
and maximal violation of the CHSH inequality are marked by
dotted-blue lines. The black dashed-dotted line represents the
classical correlation limit, Bmax ¼ 2. Grey areas correspond to all
admissible values achievable by all unitary operations.
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Example III: State considered in [24].—Kagalwala et al.
investigated (example C) a state whose density matrix
writes

ρ̂EXCðpÞ ¼
1

2

0
BBB@
1−p 0 1−p 0

0 p ip 0

1−p −ip 1 0

0 0 0 0

1
CCCA where p∈ h0;1i:

ð13Þ

The purity of this state is P ¼ 1 − 3
2
pþ 3

2
p2. In Figs. 2(a)

and 2(b) all possible values of D2 and Bmax are shown for
this particular case. The boundaries of the grey areas are
formed by the states with minimal coherence and maximal
violation of the CHSH inequality [44]

D1 ¼ D2 ¼ 0; Bmax ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

3

2
pþ 3

2
p2

r
; ð14Þ

and the maximal coherence and correspondingly minimal
violation of the CHSH inequality

D2
max ¼ 1−

3

2
pþ3

2
p2; Bmax ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3pþ3p2

q
: ð15Þ

Example IV: Werner state.—As a final example we
consider the Werner state [45], which is defined as

ρ̂WðpÞ¼
1

4

0
BBB@
1þp 0 0 2p

0 1−p 0 0

0 0 1−p 0

2p 0 0 1þp

1
CCCA wherep∈ h0;1i:

ð16Þ

The purity is P ¼ ð1þ 3p2Þ=4. When this state is trans-
formed, D2 and Bmax can attain any value inside the grey
areas in Figs. 2(c) and 2(d). For these plots, the limits are

D1 ¼ D2 ¼ 0; Bmax ¼ 2
ffiffiffi
2

p
p; ð17Þ

for minimal coherence and maximal violation of the CHSH
inequality and

D2
max ¼ p2; Bmax ¼ 2p; ð18Þ

for maximal coherence and minimal violation of the CHSH
inequality.
The relationship between coherence and correlations.—

For a given quantum state, the relationship between the
degree of coherence of each subsystem and the correla-
tions between subsystems is quantified by the measure
SA;B ¼D2

A;B=2þðBmax=2
ffiffiffi
2

p Þ2 called accessible coherence
in the subsystem A,B [24]. Especially, for a pure state the
statement,

D2
A;B

2
þ
�
Bmax

2
ffiffiffi
2

p
�

2

¼ 1; ð19Þ

is valid. Any increase (or decrease) of the degree of
coherence is compensated by a corresponding change of
Bmax. This relationship is no longer true for mixed states as
shown in the Supplemental Material [32].
What is then, for all states, the appropriate equation

that relates first-order coherence and correlations? For a
generally mixed state (Trρ̂2 ≤ 1), one can derive [18]

D2
A þD2

B

4
þ T ¼ Trρ̂2; ð20Þ

where T ¼ 1=4ð1þP
3
i;j¼1 t

2
ijÞ, tij ¼ Tr½ρ̂σ̂i ⊗ σ̂j�, and

σi;j (i; j ¼ 1; 2; 3) are Pauli matrices. The values of tij
can only be obtained by making coincidence measurements
between the subsystems, therefore measuring the nature of
its correlations. In general,

ðλ1 þ λ4Þ2 þ ðλ2 þ λ3Þ2
2

≤ T ≤ Trρ̂2: ð21Þ

For a pure state, DA ¼ DB and T ¼ ðBmax=2
ffiffiffi
2

p Þ2, so
one obtains Eq. (19). For maximally entangled states,
Bmax ¼ 2

ffiffiffi
2

p
, so T ¼ 1 achieves its maximum value, while

for separable pure states, Bmax ¼ 2 and T ¼ 1=2.
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FIG. 2 (color online). Coherence (D2) and maximal violation of
the CHSH inequality (Bmax) for (a) and (b): example III (ρ̂EXC),
and (c) and (d): example IV (ρ̂W). Green lines depict the values of
the original state, prior to any unitary transformation. The
maximal coherence and minimal violation of the CHSH inequal-
ity are marked by dashed-red lines, and the minimal coherence
and maximal violation of the CHSH inequality are marked by
dotted-blue lines. The black dashed-dotted line represents the
classical correlation limit Bmax ¼ 2. Grey areas correspond to all
admissible values achievable by all unitary operations.
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Conclusions.—We have solved several puzzles about the
relationship between coherence and certain measures of
correlations present between subsystems, as it is the case of
the CHSH inequality. For the case of two correlated two-
dimensional subsystems, we have obtained simple expres-
sions that quantify the amount of first-order coherence that
can be obtained in each subsystem (hidden coherence) by
modifying correlations between the subsystems. We have
shown that the relevant parameter to quantify the maximum
hidden coherence is the degree of violation of the CHSH
inequality, not the degree of entanglement between sub-
systems. Although we have considered here only a few
systems as examples, their analysis, based on suitably
defined quantities, illuminates the general concept of
extracting coherence from manipulating the correlations
between subsystems.
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