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Under the eigenstate thermalization hypothesis (ETH), quantum-quenched systems equilibrate towards
canonical, thermal ensembles. While at first glance the ETH might seem a very strong hypothesis, we show
that it is indeed not only sufficient but also necessary for thermalization. More specifically, we consider
systems coupled to baths with well-defined macroscopic temperature and show that whenever all product
states thermalize then the ETH must hold. Our result definitively settles the question of determining
whether a quantum system has a thermal behavior, reducing it to checking whether its Hamiltonian satisfies
the ETH.
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An ideal heat bath induces thermalization in the sense
that, when a physical system is coupled to it, its state
will evolve into a well-defined infinite-time limit which
depends only on macroscopic parameters of the bath—such
as its temperature or energy—and not on any details of
the initial state of the system, the bath, or the system-bath
interaction. It is a well-established empirical fact that both
classical and quantum systems with a very large number
of degrees of freedom exhibit these ideal-bath properties
when weakly coupled to much smaller systems, with their
temperature being a smooth function of their energy alone.
Yet, rigorous derivations relaying such a “generic” behavior
to fundamental dynamical laws seem to require rather
sophisticated, and arguably very specific and technical,
hypotheses. Then, understanding the mechanisms lying
behind the thermalization of a quantum system has become
a hot-debated topic in physics. The apparent incongruence
between the ubiquity of thermalization and the specificity
of the hypotheses that seem to imply it has spurred
substantial research [1–30], analyzing the dynamical con-
ditions under which a large quantum system behaves as
an ideal heat bath and induces thermalization. Prominent
among them is the eigenstate thermalization hypothesis
(ETH), which may be formulated by stating that the partial
traces of the eigenstates of the global Hamiltonian of the
bath and the coupled system (including the interaction
terms) are smooth functions of the energy.
It is well known that the ETH is sufficient for thermal-

ization if the initial state has a sufficiently sharp distribution
in energy [1,19], and a lot of effort has been dedicated
in checking whether specific quantum systems satisfy the
ETH, with both analytical and numerical computations
[9,12,26–30].
The converse question, however, of whether the ETH is

also necessary for thermalization, i.e., whether there exist

quantum systems not fulfilling the ETH but nonetheless
exhibiting thermal behavior, is not settled yet, and alter-
natives to the ETH have been proposed [13]. An answer
to this question has been hinted at, although not proven,
in the literature on the subject (see, e.g., the very recent
survey [19], to which the reader is also referred for a
comprehensive overview of the context). The goal of the
present work is to clarify this subtle and somewhat elusive
point by providing, for the first time to our knowledge, a
proof that the very definition of an ideal bath actually
implies the ETH. Our result then definitively settles the
question of determining whether a quantum system has a
thermal behavior, reducing it to checking whether its
Hamiltonian satisfies the ETH: if the ETH is satisfied,
the system always thermalizes, while if it is not satisfied,
there certainly exists some reasonable physical initial state
not leading to thermalization.
Before starting with the actual proof, we find it man-

datory to state preliminary, rigorous definitions of thermal-
ization, of an ideal bath, and of the ETH itself. We will
then reconsider the role of the ETH as a sufficient condition
for thermalization on the basis of our definitions, and
then proceed to present of our main finding, that the ETH
is also necessary for thermalization. Complete proofs of
the lemmata needed in the Letter may be found in the
Supplemental Material [31].
Thermalization and ideal baths.—Consider a system S

coupled to a heat bath B, with Hilbert spacesHS andHB of
dimension dS and dB, respectively. For convenience, we
describe the total Hamiltonian as Ĥ ¼ ĤC þ ĤB, com-
posed of a free term ĤB associated with the bath’s inner
dynamics, and a term ĤC that includes both the free
component associated with S and the system-bath coupling
component. We only require the norm ∥ĤC∥ to be bounded
independently of the dimension dB of the bath [32]. Let
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then the global system start in some state ρ̂. At time t it
will evolve into the density matrix ρ̂ðtÞ ¼ e−iĤtρ̂eiĤt whose
time-averaged counterpart is the diagonal part of ρ̂ in
the energy eigenbasis, Φðρ̂Þ ¼ P

npnjnihnj, assuming the
spectrum of Ĥ to be nondegenerate for simplicity. Here,
Φ denotes the time-averaging map and pn ¼ hnjρ̂jni is
the probability that the global system has energy En [11].
The time-averaged reduced state of the system S is then
obtained by taking the partial trace of Φðρ̂Þ over the bath
degrees of freedom,

ΦSðρ̂Þ≡ TrBΦðρ̂Þ ¼
X
n

pnτ̂n; ð1Þ

where τ̂n ≡ TrBjnihnj is the partial trace of the eigenstate
jni. In this context, thermalization is said to occur when the
density matrices ΦSðρ̂Þ exhibit a functional dependence
only on those properties of the initial states ρ̂ which are
directly associated with the bath, as the initial properties of
S are washed away by the time-average and partial trace
operations.
A key point in the study of such processes is the choice

of the set which identifies the initial states ρ̂ of the joint
system under which thermalization is assumed to occur: too
broad a set being typically too restrictive to describe
realistic configurations, too narrow a set leading instead
to trivial results. In many cases of physical interest, one
would know the value of only some macroscopic observ-
ables of the bath, such as the energy, so a common
hypothesis is to impose thermalization when the bath is
in the mixed state that maximizes the von Neumann
entropy among all the states with given expectation values
of the known observables [14]. A weakness of this
approach is that it does not account for situations where
the bath is prepared in a pure state. Another approach based
on typicality has then been proposed. In Ref. [11], the
initial state of the bath is a pure state chosen randomly
according to the Haar measure on the subspace of the bath
Hilbert space compatible with the values of the known
macroscopic observables. The reduced system equilibrium
state is then proven to be close, with very high probability,
to the equilibrium state resulting from choosing as the
initial state of the bath the normalized projector over the
considered subspace. A more refined choice would be to
modify the notion of typicality by adopting probability
measures that reflect the complexity of the state prepara-
tion. Indeed, the quantum pure states that are more easily
built and comparatively stable are the ground states of local
Hamiltonians, so that one may restrict to the uniform
measure on the states satisfying the area law [33–35], or
introduce a measure arising from applying a local random
quantum circuit to a completely factorized initial state
[36,37]. However, these probability measures are much
more complicated than the uniform one on the whole
Hilbert space, and the computations may not be feasible.

Besides, asking whether there exist initial states of the
bath not leading to thermalization of the system is a
legitimate question, to which these approaches based on
typicality do not have an answer. In this Letter, we want
to address precisely this question. Our definition of
thermalization is therefore as follows:
Definition 1: (Thermalization for initial product states.)

We say that a subspace Heq
B of the bath Hilbert space

induces thermalization of the system to a state ω̂ with
precision ϵ if for any initial product global state supported
onHS ⊗ Heq

B the equilibrium reduced state of the system is
close to ω̂. That is, Heq

B is such that [32]

∥ΦSðρ̂Þ − ω̂∥1 ≤ ϵ ð2Þ

for all ρ̂ ¼ ρ̂S ⊗ ρ̂B with Suppρ̂B ⊂ Heq
B .

To discuss the connection between ETH and thermal-
ization we shall further restrict the analysis to subspaces
Heq

B corresponding to microcanonical energy shells
HBðE;ΔBÞ of the bath free Hamiltonian, i.e., to subspaces
spanned by those eigenvectors of ĤB with eigenvalues in
the interval ½E − ΔB; Eþ ΔB�. In this context the associated
equilibrium reduced state ω̂ entering Eq. (2) is assumed to
depend upon HBðE;ΔBÞ only via a smooth function βðEÞ
of E, which effectively defines the inverse temperature
1=TðEÞ ¼ kβðEÞ of the bath, k being the Boltzmann
constant. Notice that ω̂(βðEÞ) and βðEÞ are otherwise
arbitrary [38]. Of course, a necessary condition for this
to happen is to have the width ΔB much smaller than
the scale over which the mapping E ↦ ω̂(βðEÞ) varies
appreciably. More precisely, with C≡ dE=dT > 0 the
bath’s heat capacity, we must have that ω̂ðβÞ does not
appreciably change for variations of β on the order
δβ ≈ ΔBjdβ=dEj ¼ kβ2ΔB=C. Considering that the largest
energy scale that can be associated with the system alone is
the operator norm ∥ĤC∥, we can conclude that thermal-
ization with precision ϵ is reasonable if ∥ĤC∥δβ ≤ ϵ, i.e., if

kβðEÞ2ΔB∥ĤC∥ ≤ ϵC(βðEÞ): ð3Þ

We are then led to define an ideal heat bath as follows.
Definition 2: (Ideal heat bath.) We say that a bath is

ideal in the energy range EB [39] with energy-dependent
inverse temperature βðEÞ if, for any ΔB and ϵ satisfying
Eq. (3) and for any E ∈ EB, the micro-canonical shell
HBðE;ΔBÞ induces thermalization to the state ω̂(βðEÞ)
with precision ϵ in the sense of Definition 1.
ETH implies thermalization.—The ETH roughly states

that, given two eigenvalues En and Em of the global
Hamiltonian Ĥ which are close, the associated reduced
density matrices τ̂n and τ̂m defined in Eq. (1) must also be
close, i.e., that τ̂n is a “sufficiently continuous” function of
the energy of the joint system. More precisely, our working
definition is the following.
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Definition 3: (ETH) We say that a Hamiltonian
Ĥ ¼ P

nEnjnihnj fulfils the ETH in the region of the
spectrum E [39] on a scale Δ with precision ϵETH if all
En; Em ∈ E with jEm − Enj ≤ 2Δ fulfil ∥τ̂m − τ̂n∥1 ≤ ϵETH.
It is worth observing that the usual formulation of the

ETH [1,19] does not split the global system into system and
bath. Instead, it identifies a class of relevant macroscopic
observables A, and states that for any Â ∈ A the diagonal
matrix elements in the energy eigenbasis hnjÂjni depend
“sufficiently continuously” on the energy. Upon choosing
as A the set of self-adjoint operators acting on the system
alone, our definition is equivalent. Indeed, for any Â ¼
ÂS ⊗ 1̂B we have hnjÂjni ¼ TrSðÂSτ̂nÞ, which are suffi-
ciently continuous functions of the energy for any ÂS if and
only if τ̂n is.
It is well established that if the ETH holds for any initial

global state with a sharp enough energy distribution, then
the time average of the reduced state of the system is a
smooth function of its average global energy alone [19];
i.e., different initial global states lead to nearly the same
equilibrium reduced state for the system if their average
energies are close and their energy distribution is suffi-
ciently sharp. Moreover, this equilibrium state is close to
the one associated with a microcanonical global state. To
make our treatment self-contained, and better emphasize
the importance of the ETH in the study of thermalization,
let us state here precisely our version of this implication
in terms of the definitions introduced above (see the
Supplemental Material [31] for a proof).
Proposition 1: (ETH implies microcanonical thermal-

ization.) Let Ĥ fulfil the ETH in E on a scale Δ with
precision ϵETH. Let P̂ be the projector onto the energy
shell HðE;ΔÞ of the total Hamiltonian, so onto the
subspace spanned by those eigenvectors of Ĥ that have
eigenvalues in the interval ½E − Δ; Eþ Δ�, which
is assumed to be contained in E. Then, for any initial
state ρ̂ peaked around the energy E in the sense
Tr½ρ̂ð1̂ − P̂Þ� ≤ ϵETH, the time-averaged reduced state
ΦSðρ̂Þ of Eq. (1) is close to the reduced microcanonical
state associated to HðE;ΔÞ,

∥ΦSðρ̂Þ − TrBðP̂Þ=TrðP̂Þ∥1 ≤ 3ϵETH: ð4Þ

Let us stress that this proposition does not assume ρ̂
to be a product or separable state; i.e., the ETH implies
thermalization even if the system and bath are initially
entangled. The link with Definitions 1 and 2 is then
provided by Lemma A.1 of the Supplemental Material
[31]: If ρ̂ is a state supported on HS ⊗ HBðE;ΔBÞ then
Tr½ρ̂ð1̂ − P̂Þ� ≤ ϵETH and Eq. (4) follows from the ETH on
a scale Δ ¼ ð∥ĤC∥þ ΔBÞ= ffiffiffiffiffiffiffiffiffi

ϵETH
p

. Further, for conditions
under which the microcanonical state may be replaced
by the canonical state, see, e.g., Refs. [17,18,40–42] and
references therein.

Thermalization implies ETH.—Proposition 1 seems to
imply that the ETH is too strong a hypothesis and that
weaker assumptions might be sufficient to justify thermal-
ization. It turns out that this is not true. Indeed, we shall
prove that the ETH must hold for any ideal heat bath
satisfying Definition 2. First off, we show that if a subspace
of the bath Heq

B induces thermalization to a state ω̂ for
any initial product state as per Definition 1, the property
extends to the entangled initial states up to an overhead
which is linear in the system dimension. Our argument
relies on the observation that the entanglement of the
eigenstates jni is limited by the system dimension dS, and
cannot grow arbitrarily even when the bath dimension is
large. Note that this result is similar in spirit to the main
finding of Ref. [16], where thermalization is disproved in
certain nonintegrable systems by establishing an upper
bound on the average system-bath entanglement over
random initial bath states.
Lemma 1: Let Heq

B be a subspace of the bath Hilbert
space that induces thermalization to a state ω̂with precision
ϵ in the sense of Definition 1. Then Heq

B induces thermal-
ization also on the entangled initial states with precision
4dSϵ, i.e.

∥ΦSðρ̂Þ − ω̂∥1 ≤ 4dSϵ ð5Þ

for all ρ̂ with support contained in HS ⊗ Heq
B .

By virtue of this Lemma, the equilibration to some
fixed state ω̂ of all initial product states in HS ⊗ Heq

B
extends to all initial states in this subspace. Then, if an
eigenstate jni of the Hamiltonian is almost contained in
the same subspace, the resulting time-averaged reduced
state of the system ΦSðjnihnjÞ is also close to ω̂. However,
if we initialize the global system in an eigenstate of the
Hamiltonian, it obviously remains there forever,

ΦSðjnihnjÞ ¼ τ̂n: ð6Þ

Combining this with the fact that the trace norm is
contracting under completely positive trace-preserving
maps [43], we have under the assumptions of Lemma 1
that (see the Supplemental Material [31] for details)

∥τ̂n − ω̂∥1 ≤ 4dSϵþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hnjQ̂jni

q
; ð7Þ

where Q̂ is the projector onto the subspace orthogonal
to HS ⊗ Heq

B . It remains to bound hnjQ̂jni for given
Heq

B ¼ HBðE;ΔBÞ, which we do in the Supplemental
Material [31], to arrive at the statement that whenever
HBðE;ΔBÞ induces thermalization to ω̂ with precision ϵ
then for all n with jEn − Ej ≤ ΔB=2 we have

∥τ̂n − ω̂∥1 ≤
8∥ĤC∥2

Δ2
B

þ 4dSϵ; ð8Þ
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which implies our main result (see the Supplemental
Material [31] for details).
Theorem 1: (Thermalization implies ETH.) Let the bath

be ideal in the energy range EB as in Definition 2. Let

ϵETH ¼ 12 sup
E∈EB

�
2∥ĤC∥2dSkβðEÞ2

C(βðEÞ)
�

2=3

: ð9Þ

Then Ĥ fulfils the ETH in the region EB on a scale

Δ ¼ 2
ffiffiffi
3

p ∥ĤC∥ffiffiffiffiffiffiffiffiffi
ϵETH

p ð10Þ

with precision ϵETH.
Typically, for any fixed inverse temperature β, the bath’s

heat capacity CðβÞ increases with the size of the bath. On
the contrary, ĤC has been chosen such that it remains
bounded. Then, for fixed β and dS, the error ϵ becomes
arbitrarily small (and thus the width Δ arbitrarily large)
as dB → ∞.
Conclusions.—The eigenstate thermalization hypothesis

has been central to much of the ongoing discussion
concerning the relaxation of open quantum systems to
fixed equilibrium states. Its role as a sufficient condition for
thermalization, which we reviewed in Proposition 1, is well
established and has been repeatedly remarked on in several
past contributions. By proving that, conversely, an ideal
heat bath must necessarily interact with the system with a
Hamiltonian fulfilling the ETH we have, in a precise and
rigorous sense, revealed the full role such a condition has to
play. This result rests on a definition of an ideal bath which
is rigorous and yet broad enough to encompass all practi-
cally relevant instances, and hence sheds considerable light
on the very general mechanisms that let open quantum
systems thermalize.
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βðEÞ ¼ ∂E lnΩ, while the density matrices ω̂ðβÞ are iden-
tified with the Gibbs states associated with the system
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