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Diffusion of information, behavioral patterns or innovations follows diverse pathways depending on a
number of conditions, including the structure of the underlying social network, the sensitivity to peer
pressure and the influence of media. Here we study analytically and by simulations a general model that
incorporates threshold mechanism capturing sensitivity to peer pressure, the effect of “immune” nodes who
never adopt, and a perpetual flow of external information. While any constant, nonzero rate of dynamically
introduced spontaneous adopters leads to global spreading, the kinetics by which the asymptotic state is
approached shows rich behavior. In particular, we find that, as a function of the immune node density, there
is a transition from fast to slow spreading governed by entirely different mechanisms. This transition
happens below the percolation threshold of network fragmentation, and has its origin in the competition
between cascading behavior induced by adopters and blocking due to immune nodes. This change is
accompanied by a percolation transition of the induced clusters.
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There are remarkable analogies between the social
contagion of information, behavioral patterns or innova-
tion, and some physical or epidemic spreading processes,
where global phenomena emerge through the diffusion of
microscopic states [1–4]. All evolve in networks with nodes
characterized by relevant state variables, and links that
represent direct interactions between nodes. In biological
systems epidemics are driven by binary interactions that
lead to the emergence of simple contagion phenomena [1].
Social diffusion processes are usually characterized by
complex contagion mechanisms, where node states are
determined by comparing individual thresholds with all
neighbor states [2,5–8]. This property, capturing the effect
of peer pressure and commonly assumed in social spread-
ing phenomena [9,10], has consequences on the dynamics
and the final outcome of the social contagion process.
Moreover, the theoretical approach to these systems has
much in common [1,6,11], which greatly helps us to
understand their behavior.
Models employing threshold mechanisms mostly focus

on cascading phenomena where, under some circumstances,
a macroscopic fraction of nodes in the network is converted
rapidly due to microscopic perturbations. This approach is
motivated by earlier social theories [9,12] and has been
implemented by Watts in an elegant model of cascading
behavior [6]. Watts showed that a global cascade (occupying
a macroscopic fraction of the network and induced by local
perturbations) can occur due to the interplay between net-
work structure and individual thresholds. He further iden-
tified the phase with a nonzero probability of global cascades
in the space ðϕ; zÞ of the average threshold ϕ of nodes and
the average degree z of the network.

While the relevance of this model is indisputable [6,11,
13–22], its limitations become clear from real social spread-
ing data. The Watts model focuses on the (instantaneous)
emergence of global cascades triggered by single local
perturbations, while there are empirical examples where
threshold mechanisms do play a role yet global adoption
phenomena emerge through other scenarios. In reality,
global adoption is often not induced by microscopic per-
turbations but by a larger fraction of people [21]. Moreover,
decisions of individuals depend on external impulses arriv-
ing from mass media or advertising [23], resulting in a
perpetual stochastic perturbation. In addition, there are
individuals entirely reluctant to adopt. Furthermore, the
Watts criterion for macroscopic adoption is purely deter-
ministic, coded in the network structure, threshold distribu-
tion, and perturbation site—it does not concern time, which
is clearly a feature of empirical stochastic processes of
adoption spreading.
Here we present a general threshold-driven model of

social contagion phenomena that captures various spreading
scenarios, ranging from cascading behavior to dynamically
evolving nonexplosive patterns, and sheds light to the
different kinetics behind them (Fig. 1). Motivated by
empirical observations [24], we extend Watts’ threshold
model by considering blocked nodes immune to social
influence and discuss their effect on cascade formation. In
addition, we introduce spontaneous adopters with a constant
rate, and present approximate analytical and numerical
results regarding our model. In particular, we study how
the kinetics of spreading changes for an increasing density
of blocked nodes. We aim at the simplest possible but
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sufficiently general extension of earlier threshold models
[6,17–22] with a minimal set of states and transitions
necessary to describe various real scenarios of social spread-
ing phenomena. The introduction of further states, secondary
adoption, or other decision-making mechanisms is left as a
further challenge, since our aim here is to model generic
cascades of primary adoption.
In Watts’ threshold model [6], all nodes are initially in a

susceptible state 0, except for a single adopter seed in state
1. The process evolves as each node with degree k changes
its state from 0 to 1 if a fraction ϕ of its neighbors have
adopted before. Since nodes cannot change their state after
exposure, the system evolves towards a state where no
further adoptions are possible. The emergence of a global
cascade depends on the degree distribution pk of the
network, the distribution pϕ of individual thresholds,
and the initial seed. The condition for a global cascade
is the existence of a percolating component of vulnerable
nodes with thresholds 0 < ϕ ≤ 1=k (who need one adopt-
ing neighbor before exposure) connected to the seed. This
percolating vulnerable tree is quickly converted after
adoption of the seed and may trigger further adoption of
stable nodes with thresholds ϕ > 1=k (who need more than
one adopting neighbor to adopt). Assuming an Erdős-Rényi
(ER) random network [26] and a single adopter seed, there
is a phase boundary in ðϕ; zÞ space encompassing a regime
where global cascades occur [Fig. 2(a)]. The properties of
this cascading regime have been investigated for the case of
heterogeneous thresholds, different network topologies
[6,11], and variable seed size [16,21].

Empirical studies, however, support the intuition that
some individuals in society may refuse to adopt techno-
logical innovations for various reasons—due to another
favorite product, aversion towards a firm, or some criticism
on principle [24]. Such individuals will never be exposed,
irrespective of the state of their neighbors [27]. To consider
this behavioral pattern in our model, we block the adoption
of a fraction r of randomly selected nodes in the network.
These nodes do count when their neighbors consider the
decision to adopt, and thus will make it harder for
neighbors to fulfil the threshold criterion.
Accordingly, the original Watts model corresponds to

r ¼ 0, while for r > 0 the phase diagram changes. Even in
the presence of blocked nodes, macroscopic spreading is
still determined by the static criterion of the existence of a
global vulnerable cluster, and thus a generating function
technique [6] can be applied [28] [29]. Assuming a single
threshold ϕ and an ER network with average degree z, the
condition for the emergence of a macroscopic cascade is

ð1 − rÞe−z
Xkc
k¼2

zk

ðk − 2Þ! − z ¼ 0; ð1Þ

with kc ¼ ⌊1=ϕ⌋. Because of the factor 1 − r, the intro-
duction of blocked nodes shrinks the region in ðϕ; zÞ space
where global cascades develop, in good agreement with
numerical simulations [Figs. 2(c) and 2(d)].
While blocked nodes hinder the spreading process, there

are reasons other than social influence that could motivate

(a)

(b)

FIG. 1 (color online). (a) Numerical simulation of a general
threshold model over an empirical network, with adoption
threshold ϕ ¼ 0.2, rate of spontaneous adopters p ¼ 0.0005,
and fraction of blocked nodes r ¼ 0.1. The network is an ego
sample of Facebook friendships with size N ¼ 96 and average
degree z ¼ 10.63 [25]. Susceptible nodes adopt spontaneously
with rate p or after a fraction ϕ of their neighbors has adopted,
while blocked nodes never adopt. (b) Schematic illustration of the
spreading process. At t ¼ t0 node P spontaneously becomes an
adopter, “infecting” nodes a and b. WhenQ adopts, it induces the
adoption of nodes c–f. Nodes inside the ellipse constitute an
induced cluster of adoption.

(a) (b)

(c) (d)

FIG. 2 (color online). Frequency Fg of global cascades as a
function of node threshold ϕ and network average degree z at an
intermediate time t ¼ 100, for varying p and r. (a)–(b) As p
increases, the region that allows global cascades of adoption
grows in size. Its boundary is well approximated by a cutoff in the
fraction of adopters ρ as calculated by Eq. (5). (c)–(d) Conversely,
an increasing fraction of blocked nodes shrinks the global
cascade regime. Dots show the boundary of this regime according
to Eq. (1). Simulations correspond to an ER network with
N ¼ 104 and are averaged over 104 realizations.
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individuals to adopt a social pattern, like external influence
from mass media. This spontaneous adoption has been
studied theoretically by introducing a given density of
adopters at the outset of the Watts model [21]. However,
spontaneous adopters may get active at any time during a
real social contagion. Thus, we include a stochastic
dynamics where a susceptible node may become adopter
with rate p at any time, irrespective of the status of its
neighbors.
Considering both extensions, we have a threshold-driven

dynamics with three node states: blocked, susceptible, and
adopter (Fig. 1). At the outset, all nodes are susceptible
except for a fraction r that remains blocked. At each time
step of the simulation, a randomly selected, susceptible
node i adopts spontaneously with probability p; otherwise,
it adopts if at least a fraction ϕ of its neighbors has already
adopted. If r ¼ 0 and p > 0 all nodes will eventually adopt
[Fig. 3(a)], following a kinetics reminiscent of the approach
to a unique ground state in a physics system. On the other
hand, if we introduce quenched randomness and stochastic
perturbations (r; p > 0), our model allows various tempo-
ral regimes and a transition from rapid to slow spreading
dynamics.
Our threshold model can be studied analytically by

extending the framework of approximate master equations
(AMEs) for monotone binary-state dynamics developed by
Gleeson [14–16,30], where the transition rate between
susceptible and adoption states only depends on the number
m of neighbors that have already adopted. We ignore

topological correlations by considering a configuration-
model network with degree distribution pk and average
degree z. We describe a node by the property vector
k ¼ ðk; cÞ, where k ¼ 0; 1;… is its degree and c ¼ 0, 1
its type; i.e., c ¼ 0 is the type of the fraction r of blocked
nodes, while c ¼ 1 is the type of all nodes that may adopt
with threshold ϕ. Moreover, pk is a joint distribution giving
the probability that a randomly selected node has property
vector k. Assuming independence between degrees and
types, pk ¼ rpk for c ¼ 0 and pk ¼ ð1 − rÞpk for c ¼ 1.
The rules of our model are condensed in the probability

Fk;mdt that a k-node will adopt in a small time interval dt,
given that m of its neighbors are already adopters, where,

Fk;m ¼
�
p if m < kϕ
1 if m ≥ kϕ

; ∀ m and k > 0; ð2Þ

with Fðk;0Þ;m ¼ 0∀ k;m and Fð0;1Þ;0 ¼ p (for blocked and
isolated nodes, respectively). The dynamics of adoption is
well described by an AME for the fraction sk;mðtÞ of
k-nodes that are susceptible at time t and havem ¼ 0;…; k
adopting neighbors [14,15,30],

_sk;m ¼ −Fk;msk;m − βsðk−mÞsk;m þ βsðk−mþ 1Þsk;m−1;

ð3Þ

where,

βs ¼
P

kpk
P

mðk −mÞFk;msk;mP
kpk

P
mðk −mÞsk;m

: ð4Þ

To reduce the dimensionality of Eq. (3) we focus on ρðtÞ,
the fraction of adopters in the network, and νðtÞ, the
probability that a randomly chosen neighbor of a suscep-
tible node is an adopter. We consider the ansatz sk;m ¼
Bk;mðνÞe−pt for m < kϕ with the binomial distribution
Bk;mðνÞ ¼ ðkmÞνmð1 − νÞk−m, leading to the condition
_ν ¼ βsð1 − νÞ. Then, the AME system is reduced to the
pair of ordinary differential equations (see the
Supplemental Material [28]),

_ρ ¼ hðν; tÞ − ρ; ð5aÞ

_ν ¼ gðν; tÞ − ν; ð5bÞ

with initial conditions ρð0Þ ¼ νð0Þ ¼ 0. Here,

hðν; tÞ ¼ ð1 − rÞ
�
ft þ ð1 − ftÞ

X
k

pk

X
m≥kϕ

Bk;mðνÞ
�
; ð6Þ

and

(a) (c)

(d)

(e)

(b)

FIG. 3 (color online). Numerical simulations and analytical
approximation of the threshold model for z ¼ 7 and ϕ ¼ 0.2
(continuous and dotted lines, respectively). (a) Fraction of
adopters ρ as a function of time for varying p and fixed r.
(b) Time evolution of the normalized adoption density ρ=ð1 − rÞ
for different values of r and fixed p. (c) Final relative density
ρ∞i =ρ

∞ as a function of r, for both spontaneous and induced
adopters (i ¼ 0, 1, respectively). (d) Final fraction of spontaneous
adopters ρ∞0 as a function of r. (e) Normalized maximum speed of
spreading _ρm=½pð1 − rÞ�, calculated from the derivative of ρðtÞ.
Shaded areas signal the regime of slow contagion r > r×. Curves
correspond to N ¼ 104 and are averaged over 103 realizations.
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gðν; tÞ ¼ ð1 − rÞ
�
ft þ ð1 − ftÞ

X
k

k
z
pk

X
m≥kϕ

Bk−1;mðνÞ
�
;

ð7Þ

with ft ¼ 1 − ð1 − pÞe−pt. A linear stability analysis of the
reduced AME system recovers the cascade condition for
p ¼ 0 (1) (see the Supplemental Material [28]). Moreover,
the fraction of adopters ρðtÞ obtained by solving Eq. (5) is
in considerable agreement with numerical simulations
[Figs. 3(a) and 3(b)]. Since susceptible nodes adopt
spontaneously with rate p, their fraction ρ0ðtÞ in the
network is approximated by

ρ0 ¼ p
Z

t

0

ð1 − r − ρÞdt; ð8Þ

where ρðtÞ follows Eq. (5) [Figs. 3(c) and 3(d)]. We denote
its counterpart ρ1 ¼ ρ − ρ0 as the fraction of induced
adoptions, i.e., vulnerable and stable adopters.
For p > 0 the dynamics has a trivial asymptotic state

with a final fraction of adopters ρ∞ ¼ 1 − r, however, the
kinetics of the model depends on the parameters. We first
focus on the frequency Fg of global cascades (i.e., adoption
reaching at least 20% of susceptible nodes [6]) and its
behavior in ðϕ; zÞ space for varying p and r. For fixed t and
p > 0, there is a region where global cascades occur
[Fig. 2(b)] that can be compared with the asymptotic
cascade regime found for p ¼ 0. The boundary of this
regime is well approximated by Eq. (1) for p ¼ 0 and by
Eq. (5) for p ≥ 0. By continuously introducing sponta-
neous adopters the global cascade regime expands, mean-
ing that macroscopic adoption is eventually possible for
systems with any degree and threshold. Even in the absence
of a percolating vulnerable component in the network, a
growing number of spontaneous adopters induces local
cascades that merge due to triggered stable adoptions and
finally form a giant component. This behavior is consistent
with empirical observations in the online spreading of
communication technologies [24].
The kinetics of spreading may change by introducing

many blocked nodes. As r (and thus random quenching)
increases the adoption process slows down [Fig. 3(b)]. In
this dynamics nodes change state in two ways: (i) via
spontaneous adoption (a slow process for small p), or
(ii) via induced adoption by fulfilling the threshold con-
dition, which may lead to fast cascading behavior. For
small r, induced adoptions dominate spreading [Fig. 3(c)]
and ρ grows rapidly towards ρ∞. On the other hand, for
large r adoption slows down since stable nodes have more
blocked neighbors and it is difficult to fulfil their threshold
condition. This slow regime is mostly driven by sponta-
neous adoption, as evidenced by the relatively large
asymptotic fraction of spontaneous adopters ρ∞0 [Fig. 3(d)].
Taking the ER network as an example, a giant

component of susceptible nodes can only exist for

r < r� ¼ 1 − 1=z [31,32]. Then, a relevant question is
whether regimes of fast and slow spreading are separated
by a characteristic value r× < r�. One possibility is to define
r× as the value that maximizes ρ∞0 and for which ρ∞0 ∼ ρ∞1 ,
with ρ∞1 the final fraction of induced adopters. For z ¼ 7,
ϕ ¼ 0.2, andp ¼ 0.0005we have r× ≈ 0.7 and r� ¼ 0.857,
meaning that slow spreading occurs even in susceptible
networks that are not fragmented. The slow regime is further
characterized by the lowest possible value in the maximum
spreading speed, _ρm ∼ pð1 − rÞ, corresponding to the rate of
spontaneous adoption at the beginning of the dynamics
[Fig. 3(e)]. In other words, the time series ρðtÞ has an
inflection point for r < r× and is concave for r > r×.
To better understand the kinetics of the crossover

between spreading regimes around r×, we finally focus
on the size distribution PðsÞ of induced clusters, i.e.,
connected components of adopters disregarding sponta-
neous adopters [Fig. 1(b)]. For early times PðsÞ includes
small induced clusters only, indicating that a larger fraction
of spontaneous adopters is crucial for global spreading
in the absence of a percolating vulnerable component
[Fig. 4(a)]. However, for late times the behavior of PðsÞ
differs between regimes: in the regime of rapid spreading
the distribution becomes bimodal due to the appearance of
a global cluster of induced adopters, while in the slow
regime (r > r×) it remains unimodal until the end of the
dynamics. Overall, the crossover between regimes seen
globally in the speed of spreading (Fig. 3) is accompanied

(a)

(b)

FIG. 4 (color online). (a) Size distribution PðsÞ of induced
clusters in the regimes of fast (r < r×) and slow (r > r×)
spreading, at several stages in the adoption process. In early
times, PðsÞ is unimodal and qualitatively similar in both regimes.
As t increases, the distribution becomes bimodal only for r < r×,
indicating the presence of global cascades. (b) Asymptotic size
distribution P∞ðsÞ of induced clusters, after t ¼ 5000 and for
varying r. For r < r× global cascades may still develop and make
P∞ðsÞ bimodal. As r increases, the distribution becomes unim-
odal and global cascades disappear. Simulations correspond to
z ¼ 7, ϕ ¼ 0.2, p ¼ 0.0005, N ¼ 104, and are averaged over 104

realizations.
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by an underlying, percolation-type transition revealed by
the asymptotic size distribution P∞ðsÞ [Fig. 4(b)]. Indeed,
in the asymptotic limit t → ∞ and as r increases, this
distribution stops being bimodal at r ≈ 0.74 ∼ r× for the
studied ER case.
The peculiarity of this dynamic percolation transition of

the induced clusters is that, in contrast to the static
percolation problems, it is not known a priori which node
will participate in the process, as any unblocked node may
become a spontaneous innovator. By analyzing the proper-
ties of this transition, we find a critical percolation point at
rc ∼ 0.738 with the set of exponents β ¼ 1.1, γ ¼ 1.0,
τ ¼ 2.5, and ν ¼ 3.1, which are rather close to the mean
field values [33].
Our aim in this Letter has been to provide a general

dynamic model of social spreading phenomena that
accounts for various kinetics. Our model is designed such
that it (a) is driven by threshold mechanisms capturing the
role of social pressure, and (b) concerns temporal aspects of
the emergence of global cascades. We generalized Watts’
threshold model [6] with mechanisms of spontaneous
adoption and complete reluctance to adoption, in order
to further understand the temporal behavior of spreading
phenomena. We have shown that, outside of the cascading
regime of the Watts model, there is the possibility of global
contagion mediated by spontaneous adopters. However, the
speed of spreading depends strongly on the density of
blocked or immune nodes. For a small fraction r of blocked
nodes, few spontaneous adopters enable the formation of
large clusters by initiating cascades. For large r, spreading
slows down as it is dominated by spontaneous adopters and
only small cascades are generated. Our intrinsically
dynamic model is able to describe various scenarios of
real social contagion as well as the crossover between them,
and shows a novel percolation transition of induced
clusters. This model has not only the potential to explain
observational data [24] but, with appropriate fitting, may
help identify the character of spreading processes at an
early stage, hinting in this way at possible measures to
improve adoption performance. Moreover, it is possible
that the consideration of blocked nodes will help under-
stand a diversity of spreading phenomena, including related
seismic or neural processes.
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