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Circadian clocks exhibit the robustness of period and plasticity of phase against environmental changes
such as temperature and nutrient conditions. Thus far, however, it is unclear how both are simultaneously
achieved. By investigating distinct models of circadian clocks, we demonstrate reciprocity between
robustness and plasticity: higher robustness in the period implies higher plasticity in the phase, where
changes in period and in phase follow a linear relationship with a negative coefficient. The robustness of
period is achieved by the adaptation on the limit cycle via a concentration change of a buffer molecule,
whose temporal change leads to a phase shift following a shift of the limit-cycle orbit in phase space.
Generality of reciprocity in clocks with the adaptation mechanism is confirmed with theoretical analysis of
simple models, while biological significance is discussed.
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Biological systems are both robust to external changes in
the environment, and plastic to adapt to environmental
conditions. How are the robustness and plasticity, which
seem to be opposing properties at a first glance, compatible
with each other? In the present Letter, we address this
question, by focusing on biological clocks, which are
ubiquitous in organisms.
Such biological clocks often work as pacemakers, to

adapt to periodic events. One of the most prominent
examples of such oscillators is a circadian clock [1,2].
To respond to periodic events, the following two criteria are
generally imposed on a biochemical oscillator.
(1) Robustness of period: If the period of an oscillator

strongly depends on external conditions, the oscillator
would not accurately predict time. For example, if the
period of a circadian clock is sensitive to temperature, the
clock malfunctions depending on the temperature. To avoid
such an error, the period of pacemakers should not be
affected by external conditions such as temperature and
nutrient compensation [3,4].
(2) Plasticity of phase: The period of the circadian clock

of most organisms is known not to correspond precisely
with 24 hours [5], and biological clocks are entrained with
the external 24-hr cycle [6], so that the phase difference
between the two does not increase with time. This entrain-
ment is also necessary to adapt an abrupt change in the
environment that may cause temporal misalignment
between the internal and external cycles. For such entrain-
ment, plasticity of the phase of the internal clock against
external stimuli, e.g., changes in temperature and/or bright-
ness, is needed.

Indeed, biological clocks satisfy both robustness and
plasticity to changes in factors such as temperature and
nutrient conditions, which change in the daily cycle. For
example, circadian clocks of in vivo Drosophila [7],
Neurospora [8], and in vitro cyanobacteria [9,10] show
temperature compensation of a period and are entrained by
cyclic temperature changes. Robustness of period is also
important to stable entrainment since it can reduce the
difference between the period of inner clock and external
cycle. In spite of some studies discussing the compatibility
between the two properties [7,11–13], however, little is
known about the quantitative relationship between the two
properties.
To answer how the robustness of the period and plasticity

of phase are compatible with each other, we first analyze
two major models of a circadian clock, i.e., the post-
translational oscillator (PTO) [9,14,15] and transcription-
translation-based oscillator (TTO) [12,13,15], which
consists only of protein-protein interactions and both
transcription and translation processes, respectively.
Without imposing any special mechanism, we demonstrate
that biological clocks with robustness of period against
changes in an environmental factor generally exhibit phase
entrainment against the cyclic change of that factor—
reciprocity between the robustness of period and plasticity
of phase: the plasticity increases with robustness.
For the PTO model, we adopt the KaiC allosteric model

[16], for an in vitro cyanobacterial circadian clock system
[9]. Here, the KaiC protein consists of six monomers, each
of which has a phosphorylation site. The protein has active
and inactive forms. Active (inactive) KaiC are phospho-
rylated (dephosphorylated) step by step, respectively.
Phosphorylation reactions are facilitated with KaiA as an
enzyme and dephosphorylation reactions spontaneously
progress without an enzyme. kp and kdp denote the rate
of phosphorylation and dephosphorylation of KaiC,
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respectively, which depend on temperature as kp ∝
expð−βEpÞ and kdp ∝ expð−βEdpÞ, where Ep (Edp) is
the activation energy for phosphorylation (dephosphoryla-
tiion), respectively, and β is the inverse temperature by
taking the Boltzmann constant as unity. The temporal
evolution of the concentration of each phosphorylated
active (inactive) KaiC is given by rate equations (see
model equations and Fig. 1(a) of Ref. [17]).
This model shows a limit-cycle attractor in which the

total phosphorylation level, i.e., the ratio of phosphorylated
monomers, oscillates in time. We demonstrated that the
robustness of the period against various environmental
changes is achieved by enzyme-limited competition
[18,19]: With the increase in temperature, the abundance
of the active form of the KaiC molecule increases, which in
turn decreases the abundance of the free KaiA molecule,
and thus the increase in the rate of phosphorylation kp is
canceled out, when the total KaiA amount, Atotal, is
sufficiently small. This robustness in the period is achieved
when Ep is sufficiently larger than Edp. We use the
difference in periods between two different temperature
conditions (ΔT=T) as an indicator of the robustness of
period. Its dependence upon Edp − Ep is given in Fig. 1(a).
This clock, on the other hand, entrains against external

periodic change, so that the phase of the phosphorylation
oscillator coincides with that of the external cycle. By
imposing an external periodic change in temperature, we

computed how many cycles are needed for the clock to
entrain with this external cycle, and defined entrainability as
the inverse of the number (see Ref. [17]). Dependence of the
entrainability andΔT=T upon Edp with fixed Ep is plotted in
Figs. 1(a) (red circle) and 1(b). As Edp − Ep is smaller,
ΔT=T becomes smaller and the entrainability is higher. In
other words, if the period of the clock is more robust against
temperature change, it is entrained faster with the external
temperature cycle; i.e., the phase has higher plasticity.
Although this demonstrated the correlation between

period robustness and phase plasticity, the entrainability
here is a complicated indicator for the latter, as it can
depend on the form of external cycle. Hence, we introduce
a more tractable indicator for the plasticity of phase, by
using a phase response curve (PRC) [20]. A PRC is a
function of phase and represents a phase shift introduced by
a transient stimulus. When a transient stimulus is added to
an oscillatory system, the period of oscillation is temporally
altered depending on the phase when the stimulus was
added. The period finally returns to its original value. In
this time, the phase of the oscillator progresses (or is
delayed) from the original phase because of the temporal
shortening (or lengthening) of the period. The PRC
represents such a phase shift Δϕ as a function of the phase
ϕ when the stimulus is applied. We computed the PRC by
transiently changing the inverse temperature from β1 to β2
for one time unit [see Fig. 1(c)], by defining the phase of
oscillation by the time when the total phosphorylation level
takes the maximum value at ϕ ¼ 0; 2π;… As an indicator
of the plasticity of phase, we measured the difference
between maximum and minimum values of the phase
change Δϕ in PRC [21] normalized by the magnitude of
a stimulus by fixing its duration as one time unit. The
dependence of Δϕ and ΔT=T on Edp with fixed Ep is
plotted in Fig. 1(a). When Edp is low, i.e., when the
temperature dependence of dephosphorylation reaction is
weak, ΔT=T is small and Δϕ is large. This reciprocity was
also obtained against changes in other parameters, β1 and
Atotal (see Fig. 3 of Ref. [17]). This indicates that a
biochemical oscillator with a homeostatic period against
an environmental change can easily shift its phase under the
same environmental change. We also confirmed such
reciprocity against change in the concentration of ATP
(adenosine triphosphate), i.e., the case of nutrient compen-
sation (see Fig. 5 of Ref. [17]).
Now, we examine if such reciprocity holds in the other

class of circadian clocks, the TTO. In the TTO model, a
clock-related gene is first transcribed and translated, and
later such a translated protein represses the expression of its
own gene with a time delay. When the transcription rate
decreases, the amount of such a protein also decreases,
which weakens the suppression of the clock-related gene
expression. Consequently, such genes are transcribed
again, leading to the oscillation of the gene expression
level. As a typical example of the TTO model, we choose
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FIG. 1 (color online). Reciprocity between the robustness of
period and plasticity of phase in the PTO model. (a) Difference
between periods at two temperatures (β1 ¼ 1.0 and β2 ¼ 1.5)
(ΔT=T, red circle) and the amplitude of the phase response curve
against a transient jump of temperature from β1 to β2 (Δϕ, green
square) plotted against different values of Edp while Ep is fixed at
1.0. ΔT is normalized by the period at β1, and Δϕ is normalized
by the duration of stimulus and difference between β1 and β2.
ΔT=T and Δϕ are negatively correlated across the entire range of
Edp. (b) Entrainability is plotted against various Edp with fixed
Ep ¼ 1.0. (c) Phase response curve against transient increase in
β. As a stimulus, the inverse temperature β is increased from β1 to
β2 for the duration of one unit of time. Lines of different colors
represent the PRCs for different values of activation energy for
the dephosphorylation reaction Edp.
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here a model of the circadian clock of a fruit fly [22]
(see model equations and Fig. 1(b) of Ref. [17]). By
varying the activation energy for mRNA degradation,
Ea, and fixing activation energies for other reactions, we
measuredΔϕ andΔT=T using the same procedure as in the
Kai model. Then, ΔT=T is low and Δϕ is high for a low Ea
value, and ΔT=T (Δϕ) increases (decreases) with the
increase in Ea (Fig. 2 and see also Fig. 7 of Ref. [17]).
Thus, the reciprocity holds also in the TTO.
To discuss the reciprocity analytically, we then study the

Stuart–Landau model, a minimal model for simple sinus-
oidal oscillation [23]. The model consists of the amplitude
R and argument Θ, where R and _Θ reach a constant value at
the limit-cycle attractor. Indeed, this model is derived as
a normal form close to the Hopf bifurcation point.
We introduce an external parameter β:

dRðβÞ
dt

¼ f1ðβÞR − R3; ð1aÞ

dΘðβÞ
dt

¼ f1ðβÞωþ f2ðβÞR2; ð1bÞ

where, f1ðβÞ is a response function of the first order term in
complex Ginzburg-Landau equation, and f2ðβÞ is that of
the third order term (for choice of each functions, see
Ref. [17]). Considering the stability of the limit cycle, the
relaxation of R after perturbation is assumed to be much
faster than that of Θ [24]. Here, the period is given as

TðβÞ ¼ 2πff1ðβÞ½ωþ f2ðβÞ�g−1: ð2Þ
Thus, after the change β → β þ Δβ, the dependence of
period on β is given as

Δ lnTðβÞ≃ −Δ ln f1ðβÞ − Δf2ðβÞ½ωþ f2ðβÞ�−1: ð3Þ
Here, we neglected higher order terms of Δβ, assuming
that it is sufficiently smaller than β. From Eq. (3), if
Δ ln f1ðβÞ ¼ −Δf2ðβÞ½ωþ f2ðβÞ�−1 [i.e., f01=f1 ¼ −f02=
ðωþ f2Þ] is satisfied, the dependence of the period on

f2ðβÞ will be counterbalanced by f1ðβÞ, and the period is
compensated against a change in β.
The argumentΘ is defined only on a limit-cycle orbit, and

we introduce the phase ϕ to extend the definition to the
phase space out of the limit-cycle attractor, in particular to its
basin. It is postulated that ϕ agrees with Θ on the limit-cycle
orbit, i.e., different orbits from the same ϕ converge to the
same point on the limit cycle having the sameΘ value. Now,
we will derive an isochrone, which is a set of points with the
same ϕ on the phase space. ϕ is expected to have rotational
symmetry; hence, the isochrone of the Stuart-Landau equa-
tion against the parameter β is derived as

ϕðR;Θ; βÞ ¼ Θþ f2ðβÞ
�
lnR −

1

2
ln f1ðβÞ

�
: ð4Þ

(see the Supplemental Material in Ref. [17].) Then, we
consider an operation that increases β from β0 to β0 þ Δβ
and instantaneously reverses it to β0. By assuming that R
instantaneously relaxes to R�ðβ0 þ ΔβÞ ¼ ½f1ðβ0 þ ΔβÞ�1=2
while Θ remains unchanged, the phase after the above
operation is derived as

ϕðβ0 þ ΔβÞ ¼ Θðβ0Þ

þ f2ðβ0Þ
2

fln f1ðβ0 þ ΔβÞ − ln f1ðβ0Þg:
ð5Þ

Hence, when Δβ ≪ β, the change in phase is derived as

Δϕðβ0Þ ¼ f2ðβ0ÞΔ ln f1ðβÞ=2: ð6Þ

Therefore, from Eqs. (3) and (6), changes in the period and
phase are represented by an equality.

aΔ lnT þ Δϕ ¼ c; ð7Þ

where a ¼ f2ðβÞ=2, c ¼ −f2ðβÞΔf2ðβÞ=2½ωþ f2ðβÞ�,
which depend only on f2ðβÞ and not on f1ðβÞ. Thus, when
we construct f1ðβÞ, which compensates for the dependence
of f2ðβÞ on β according to Eq. (3), the phase is altered as
Δϕ ¼ c. On the other hand, when f1ðβÞ is independent of β,
the phase is also independent due to Eq. (6), while the period
is strongly dependent on β as Δ lnT ¼ c=a ¼ −Δf2ðβÞ=
½ωþ f2ðβÞ�.
We also confirmed the reciprocity is valid in the modified

van der Pol oscillator [25] with strong nonlinearlity, i.e.,
beyond the neighborhood of Hopf bifurcation (See Fig. 9
of Ref. [17]).
The origin of reciprocity is also understood from the

viewpoint of the adaptation motif. The standard minimal
feedforward motif for adaptation consists of two compo-
nents, x and y [26]. In the feedforward network in Fig. 3(a),
an input changes both components x and y, while y gives an
input to x. Here, the direct path to x and the indirect path via
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FIG. 2 (color online). Reciprocity between the robustness of
period and plasticity of phase in the TTO model. Difference
between periods at two temperatures (β1 ¼ 0.0 and β2 ¼ 0.5)
(ΔT=T, red circle) and the amplitude of the phase response curve
against a transient jump of temperature from β1 to β2 (Δϕ, green
square) plotted against various Ea, while activation energies for
other reactions are fixed at 1.0. ΔT=T and Δϕ are calculated
similarly to how they are calculated in Fig. 1.
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y from the input have opposite signs. Then, the response of
the output x via the direct path is later canceled by y, and
the adaptation behavior against the input is shaped. The
degree of adaptation depends on the strength of the indirect
regulation; weak regulation induces a partial adaptation and
strong regulation leading to the cancellation of the two
paths, induces perfect adaptation [27,28].
Our Stuart–Landau model also has a feedforward motif

consisting of amplitude and angular velocity. When an
environmental condition β is changed, the angular velocity
and amplitude are altered by the terms f1ðβÞ and f2ðβÞ.
After a direct change in angular velocity, the change is
relaxed by the change in amplitude. The period is determined
as the inverse of the angular velocity. If changes in the
amplitude are large, the period is perfectly compensated and
the phase is plastic. In contrast, if the change in amplitude is
small, the angular velocity shows partial adaptation leading
to partial compensation of the period while the phase is only
slightly altered. Therefore, the reciprocity is understood as
the adaptation dynamics on a limit cycle.
Indeed, the above argument of the adaptation on the

limit cycle generally holds, for PTO and TTO models,
where we can generally consider the scheme of Fig. 3(a).
Environmental change directly influences the angular
velocity while it is also buffered in the amplitude and
then influences the phase. In a biochemical clock, the
period mainly depends on the rate-limit reactions, which
are slower than others. Environmental change will alter
the speed of such rate-limit reactions, which is later
counterbalanced by the change in the concentration of
buffer molecules [29]. In fact, in the PTO model, the
amount of free enzyme working as a buffer molecule can
counterbalance the speed of the rate-limit reaction. Hence,

the period of the oscillator is homeostatic against envi-
ronmental changes. Likewise, in a TTO model, mRNA
plays the role of such a buffer molecule.
Then, the limit-cycle orbit of oscillators with compensa-

tion shifts in the phase space of chemical concentrations to
change that of a buffer molecule [see Fig. 3(b)]. When
homeostatic response is achieved, the concentration
of a buffer molecule x should be changed with Δx by the
change in the external environment. Then the limit-cycle
orbit will be shifted to change the concentration of a buffer
molecule, and the magnitude of such a shift and the change
in isocline will beOðΔxÞ considering the continuous change
in the isocline against Δx which is small. Then, Δϕ ∝ Δx is
expected. On the other hand, when the change in the
concentration of a buffer molecule is not sufficient to
counterbalance the environmental stimulus, the concentra-
tions of other molecules will change. Let us represent the
concentration of x needed for perfect adaptation as Δx�.
Then, the change in the concentration of the other molecule
of the lowest order is proportional to Δx� − Δx. The period
also changes accordingly, so that ΔT=T ∝ Δx� − Δx is
expected. By combining the two proportional relationships,
we obtain aΔϕþ bΔT=T ¼ Δx� with coefficients of pro-
portionality a and b.
We have shown that reciprocity exists in both the PTO

and TTO models. The currently known mechanisms of
circadian oscillation can be classified into the above two
cases [15], and the reciprocity is expected to be achieved
universally in circadian clocks [31]. In a circadian clock
system of a mold, Neurospora crassa, it was reported that
a loss-of-temperature-compensation mutant, frq-7, shows
smaller phase shift against transient temperature change
than the wild type [8,37,38]. Although the quantitative
relationship between temperature compensation and phase
plasticity was not investigated therein, we expect that a
quantitative experiment will confirm our reciprocity, not
only in Neurospora crassa but also in other organisms in
which loss-of-temperature-compensation mutants are iso-
lated, e.g., fruit fly [39] and cyanobacteria [40]. Here, we
demonstrated the reciprocity against changes in the temper-
ature and the nutrient concentration, but from a theoretical
consideration, it is expected to hold generally against a
variety of stimuli, such as the change in strength of light
and transcription rate [41,42], as long as the adaptation
mechanism works. Moreover, it is also expected that the
reciprocity is not limited to the circadian clock; it holds
generally as long as the adaptation mechanism with
buffering molecules works [43]. Our reciprocity will give
a general quantitative law for such adaptation systems.
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FIG. 3 (color online). Schemes of the reciprocity between the
robustness of period and plasticity of phase. (a) Schematic
networks of a generic (bio)chemical oscillator exhibiting homeo-
stasis of period. Pointed and flat arrowheads indicate positive and
negative regulation, respectively. Correspondences with a simple
feedforward adaptation motif are represented by green characters
in parentheses. (b) Scheme of limit-cycle orbits with compensa-
tion of the period against environmental change. Blue dotted line
is a stable limit-cycle orbit before environmental change. The
green dashed line and magenta solid line are stable limit-cycle
orbits after environmental change when the period is perfectly
compensated and partially compensated, respectively.
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