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It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry.
However, in this work, we demonstrate that Hall-like currents can occur in second-order response to
external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both
zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the
dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when
the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose
form is determined by point group symmetry. We discus optimal conditions to observe this effect and
propose candidate two- and three-dimensional materials, including topological crystalline insulators,
transition metal dichalcogenides, and Weyl semimetals.
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Introduction.—The Hall conductivity of an electron
system whose Hamiltonian is invariant under time-reversal
symmetry is forced to vanish. Crystals with sufficiently low
symmetry can have resistivity tensors which are aniso-
tropic, but Onsager’s reciprocity relations [1] force the
conductivity to be a symmetric tensor in the presence of
time-reversal symmetry. Hence, when the electric field is
along its principal axes the current and the electric field are
collinear, at least to the first order in electric fields.
However, this constraint is only about the linear response
and does not necessarily enforce the full current to flow
collinearly with the local electric field.
In this Letter we study a special type of such nonlinear

Hall-like currents. We will demonstrate that metals without
inversion symmetry can have a nonlinear Hall-like current
arising from the Berry curvature in momentum space. The
conventional Hall conductivity can be viewed as the zero-
order moment of the Berry curvature over occupied states,
namely, as an integral of the Berry curvature within the
metal’s Fermi surface. The effect we discuss here is
determined by a pseudotensorial quantity that measures
a first-order moment of the Berry curvature over the
occupied states, and hence we call it the Berry curvature
dipole. This nonlinear Hall effect has a quantum origin
arising from the anomalous velocity of Bloch electrons
generated by the Berry curvature [2], but it is not expected
to be quantized.
In a time-reversal invariant system, the Berry curvature is

odd in momentum space, ΩaðkÞ ¼ −Ωað−kÞ, and hence its
integral weighed by the equilibrium Fermi distribution is
forced to vanish, because Kramers pair states at k and −k
are equally occupied. However, the second-order response
is determined by the integral of the Berry curvature
evaluated in the nonequilibrium distribution of electrons
computed to first order in the electric field. Since the

nonequilibrium current-carrying distribution is not sym-
metric under k → −k, the integral of the Berry curvature
weighed by it can be finite, leading to a net anomalous
velocity and hence a transverse current.
Our study builds upon a seminal work by Moore and

Orenstein [3], which predicted a dc photocurrent in
quantum wells without inversion symmetry due to the
anomalous velocity associated with the Berry phase. The
quantum nonlinear Hall effect presented here can be
regarded as a generalization of this effect. We predict that
an oscillating electric field can generate a transverse current
at both zero and twice the frequency in two- and three-
dimensional materials with a large class of crystal point
group symmetries. In particular, the second harmonic
generation is a distinctive signature that may facilitate
the experimental detection of the quantum nonlinear Hall
effect. Additionally, the effect does remain finite in the dc
limit of the applied electric field.
General theory.—The electric current density is given by

the integral of the physical velocity of the electrons va
weighed by their occupation function fðkÞ:

ja ¼ −e
Z
k
fðkÞva: ð1Þ

For simplicity, we imagine a single band system but allow it
to be two or three dimensional:

R
k ≡

R
ddk=ð2πÞd. The

velocity contains two contributions, namely, the group
velocity of the electron wave and the anomalous velocity
arising from the Berry curvature [2] (ℏ ¼ 1):

va ¼ ∂aϵðkÞ þ εabcΩb
_kc; ð2Þ

where ∂a ¼ ∂=∂ka , ϵ and Ωb are the energy dispersion and
the Berry curvature of the electrons in question:
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Ωa ≡ εabc∂bAc; Ac ≡ −ihukj∂cjuki: ð3Þ

Within the Boltzmann picture of transport, the canonical
momentum of electrons changes in time in response to the
external electromagnetic fields. In the absence of external
magnetic fields, the change of momentum is

_kc ¼ −eEcðtÞ; ð4Þ

where EcðtÞ ¼ RefEceiωtg, with Ec ∈ C the driving
electric field which oscillates harmonically in time but
is uniform in space. In the relaxation time approximation,
the Boltzmann equation for the distribution of electrons
is [4]

−eτEa∂af þ τ∂tf ¼ f0 − f; ð5Þ

where f0 is the equilibrium distribution in the absence of
external fields. We are interested in computing the response
to second order in the electric field; hence, we expand the
distribution up to second order: f ¼ Reff0 þ f1 þ f2g,
where the term fn is understood to vanish as En. One finds a
recursive structure:

f1 ¼ fω1 e
iωt; fω1 ¼ eτEa∂af0

1þ iωτ
;

f2 ¼ f02 þ f2ω2 e2iωt; f02 ¼
ðeτÞ2E�

aEb∂abf0
2ð1þ iωτÞ ;

f2ω2 ¼ ðeτÞ2EaEb∂abf0
2ð1þ iωτÞð1þ 2iωτÞ : ð6Þ

Writing the current as ja ¼ Refj0a þ j2ωa e2iωtg, one obtains

j0a ¼
e2

2

Z
k
εabcΩbE�

cfω1 − e
Z
k
f02∂aϵðkÞ;

j2ωa ¼ e2

2

Z
k
εabcΩbEcfω1 − e

Z
k
f2ω2 ∂aϵðkÞ: ð7Þ

The term j0a describes a rectified current while the term
j2ωa describes the second harmonic. The second terms that
appear in Eq. (7) are completely semiclassical and do not
require the presence of Berry curvature. However, within
the approximation of a constant τ, one finds that these
nonlinear terms are proportional to the integral of a three-
index tensor, ∂aϵðkÞ∂bcf0ðkÞ, which is odd under time
reversal and, hence, they are forced to vanish. Therefore,
the only surviving terms are those associated with the Berry
curvature. By writing j0a ¼ χabcEbE�

c, j2ωa ¼ χabcEbEc, one
has [5]

χabc ¼ εadc
e3τ

2ð1þ iωτÞ
Z
k
ð∂bf0ÞΩd: ð8Þ

The presence of the factor ∂bf0 will guarantee that only
states close to the Fermi surface will contribute to the
integral in the low temperature limit, so that this response is
a Fermi liquid property [6]. Equation (8) can be rewritten as
follows:

χabc ¼ −εadc
e3τ

2ð1þ iωτÞ
Z
k
f0ð∂bΩdÞ: ð9Þ

This expression [Eq. (9)] for the nonlinear conductivity
tensor, χabc, is the first main result of this work. It shows
that χabc is proportional to the dipole moment of the Berry
curvature over the occupied states, defined as

Dab ¼
Z
k
f0ð∂aΩbÞ: ð10Þ

It is interesting to note that this tensor is dimensionless in
three dimensions. At frequencies above the width of the
Drude peak ωτ ≫ 1 and below the interband transition
threshold, the prefactor in χabc becomes independent of the
scattering time, so that χabc directly measures the quantum
geometry of the Bloch states. In the dc limit or for linearly
polarized electric fields, the Berry curvature dipole term
always produces a current that is orthogonal to the electric
field jaEa ¼ 0 [7].
To close this section, we wish to remark that there exist

additional second-order corrections to the current arising
from modifications to Eq. (2) that are intrinsic to the band
structure, containing no powers of the scattering time τ [8];
however, these contributions vanish for time-reversal invari-
ant systems. Other type of rectifications might arise in
systems with an inversion asymmetric scattering rate,
namely, when the scattering from k to k0 has a different
rate than that from −k to −k0, which produces a kind of
ratchet effect [9]. These semiclassical Berry-phase indepen-
dent contributions are distinguished from the quantum
nonlinear Hall effect discussed in this work because they
are expected to scale as τ2.
Berry curvature dipole in three dimensions.—Let us

explore the constraints imposed by crystal point sym-
metries on the Berry curvature dipole tensor Dab. A point
symmetry is described by an orthogonal matrix S. Because
the Berry curvature is a pseudovector, the Berry curvature
dipole transforms as a pseudotensor. Hence, crystal sym-
metries impose constraints of the form

D ¼ detðSÞSDST: ð11Þ

To determine which components of this tensor are nonzero,
it is convenient to decompose it into symmetric and
antisymmetric parts, D� ¼ ðD�DTÞ=2, which transform
independently under symmetry operations. The antisym-
metric part of a pseudotensor transforms as a vector, as can
be verified from Eq. (11). The components of this vector
can be taken to be da ≡ ϵabcD−

bc=2. Therefore, for it to be
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nonzero the crystal must have a polar axis. From the 32
crystallographic point groups, 10 allow for a polar axis,
namely, fCn; Cnvg, with n ¼ 1, 2, 3, 4, 6. The vector da
will be oriented along such axis. The contribution to the
current from this antisymmetric part can be written in
vector notation as

~j0 ¼ e3τ
2ð1þ iωτÞ

~E�
× ð~d × ~EÞ;

~j2ω ¼ e3τ
2ð1þ iωτÞ

~E × ð~d × ~EÞ: ð12Þ

Let us now determine which crystals allow for a nonzero
symmetric part Dþ. We require the crystal to be inversion
asymmetric, for otherwise the Berry curvature would be
identically zero due to time-reversal symmetry. Any real
symmetric matrix can be diagonalized and has a real
spectrum. Let us denote its eigenvalues and eigenvectors
by δi, ei, respectively: Dþ ¼ P

3
i¼1 δieie

T
i . All inversion

asymmetric crystals without left-handed symmetries allow
for Dþ to be nonzero, but might impose constraints on its
eigenvectors to lie along the principal symmetry axis and
some of its eigenvalues to be degenerate, much in the same
way they constrain an ordinary tensor. Such noncentro-
symmetric crystal point groups without left-handed sym-
metries are fO; T; C1; Cn;Dng, with n ¼ 2, 3, 4, 6.
However, under left-handed symmetries (det S ¼ −1)

the transformations of Dþ differ from those of an ordinary
tensor. Equation (11) implies that under a left-handed
symmetry operation the spectrum goes to minus itself:
fδ1; δ2; δ3g → f−δ1;−δ2;−δ3g. Therefore, for it to remain
invariant as a set, it must have the form
fδ1; δ2; δ3g ¼ fδ; 0;−δg. In such a case the eigenvectors
would transform as Se1 ¼ �e3, Se3 ¼ �e1, Se2 ¼ �e2.
Therefore, any crystal with a left-handed symmetry and an
n-fold rotation axis with n ≥ 3 will force the tensor Dþ to
identically vanish, since such n-fold rotation would addi-
tionally force the eigenvectors contained within the invari-
ant plane to be degenerate. For a mirror symmetry, the null
eigenvector has to be parallel to the mirror plane, and the
eigenvectors with opposite eigenvalues must be at π=4
angles from such plane, so that they are swapped under the
mirror operation. Therefore, the only noncentrosymmetric
crystals with mirror symmetries that allow for a nonzero
Dþ are C1v and C2v [10]. For C1v symmetry, Dþ has two
independent parameters which can be taken to be the
positive eigenvalue and the orientation of the null eigen-
vector within the mirror plane. For C2v there is only one
independent parameter, which can be taken to be the
positive eigenvalue, since the null eigenvector is forced
to lie along the rotation axis. Finally, the point group S4,
which contains a single left-handed fourfold rotoreflection
symmetry, allows for a nonzeroDþ, whose null eigenvector
is forced to lie along the rotoreflection axis. Dþ has two
independent parameters for S4, which can be taken to be the

positive eigenvalue and the orientation of the corresponding
eigenvector within the rotoreflection plane.
Berry curvature dipole in two dimensions.—In two-

dimensional crystals the Berry curvature behaves as a
pseudoscalar (only the out-of-plane component is nonzero);
hence, the Berry curvature dipole behaves as a pseudo-
vector contained in the two-dimensional plane:

Da ¼
Z
k
f0ð∂aΩzÞ: ð13Þ

This vector has units of length. Therefore, symmetry
constraints are more severe in two dimensions. In fact,
the largest symmetry of a 2D crystal that allows for a
nonvanishing Berry curvature dipole is a single mirror line
(i.e., a mirror plane that is orthogonal to the 2D crystal),
which would force Da to be orthogonal to it. In vector
notation, the current can be written as

~j0 ¼ e3τ
2ð1þ iωτÞ ẑ ×

~E�ð ~D · ~EÞ;

~j2ω ¼ e3τ
2ð1þ iωτÞ ẑ ×

~Eð ~D · ~EÞ: ð14Þ

The presence of a single mirror symmetry would force the
linear conductivity tensor to have its principal axes aligned
with the mirror line. Consequently, according to Eq. (14),
when the driving electric field is aligned with the direction
of the Berry curvature dipole vector ~D, all the current that
flows orthogonal to it would arise solely from the Berry
curvature dipole term.
Candidate materials.—Berry curvature often concen-

trates in small regions in momentum space where two or
more bands cross or nearly cross. Therefore, Dirac and
Weyl materials are excellent candidates to observe the
quantum nonlinear Hall effect predicted in this work.
Moreover, since this effect requires a Berry curvature
dipole, it is advantageous to choose low-symmetry crystals
with tilted Dirac or Weyl point (see below). We propose
three classes of candidate materials: topological crystalline
insulators (TCIs), two-dimensional transition metal dichal-
cogenides, and three-dimensional Weyl semimetals.
The surface of topological crystalline insulators hosts

massless Dirac fermions protected by mirror symmetries
[11,12]. In particular, the [001] surface of TCIs SnTe,
Pb1−xSnxTe, and Pb1−xSnxSe hosts four massless Dirac
fermions [13] protected by two mirror symmetries. Pairs of
Dirac cones with spin-momentum locking are located near
the X̄ points of the surface Brillouin zone, forming a
Kramers pair. At low temperatures the surface undergoes a
structural transition into a ferroelectric state and one of the
mirror symmetries is spontaneously broken [14,15], while
the other remains intact. As a result, two of the surface
Dirac cones become massive, while the other two remain
massless [16] (see inset in Fig. 1). Since the remaining
massless Dirac points have vanishing Berry curvature, it is
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sufficient to consider the contribution to the Hall current
from the two Dirac points that become massive in the
distorted crystal structure. They acquire Berry curvatures of
opposite signs, because they are mapped into one another
by time-reversal symmetry. The low energy Hamiltonian
for the massive Dirac point located at momenta �Λ away
from X̄1 is given by

HsΛ ¼ vxkxσy − svykyσx þ sαky þ βσz; ð15Þ

where s ¼ �1. β is the size of the gap opened by the
ferroelectric distortion. This low energy theory coincides
with that previously considered in the literature [13,14,16],
except for the term proportional to α, which produces a tilt
in the Dirac cones. This tilt is allowed by symmetry and has
been observed in ARPES studies [17], and is required for a
nonzero Berry curvature dipole (see below). The dispersion
relation for the titled Dirac cone is

εsðkÞ ¼ sαky þ sgnðμÞðβ2 þ v2xk2x þ v2yk2yÞ1=2; ð16Þ

where μ > 0 (μ < 0) for conduction (valence) band. The
Berry curvature can be found, from Eq. (3), to be

Ωs ¼
sgnðμÞ

2

svxvyβ

ðβ2 þ v2xk2x þ v2yk2yÞ3=2
: ð17Þ

At zero temperature the Berry curvature dipole, computed
from Eq. (13), reduces to an integral over the region
εsðkÞ < μ. This integral can be computed by performing
an area preserving transformation, k0y ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
vy=vx

p
ky,

k0x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
vx=vy

p
kx, and by noting that the Fermi surface is

an ellipse in the primed coordinates, k02x =γ2x þ ðk0yþ
sk0Þ2=γ2y ¼ 1, where γx ¼ γ=v, γy¼γ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−α02

p
, k0¼μα0=

ðv2−α02Þ, v ¼ ffiffiffiffiffiffiffiffiffivxvy
p , γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ðv2 − α02Þk20 − β2

p
,

α0 ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffi
vx=vy

p
. The condition v2 > α02 is equivalent to

v2y > α2 and is needed for the stability of the tilted Dirac
cones. The condition μ2 þ ðv2 − α02Þk20 > β2 states that the
chemical potential is outside the gap, so that there is a finite
density of massive Dirac fermions.
The surviving mirror symmetry, which takes ky → −ky,

dictates that only the y component of the Berry curvature
dipole is nonzero, and is found to be

Dy ¼
3v2nβαjμjð1þ u2Þ

½μ2ð1þ u2Þð1þ 2u2Þ − u2β2�5=2 ; ð18Þ

where u ¼ α0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − α02

p
and n ¼ R

jεsðkÞj<jμj d
2k=ð2πÞ2 ¼

γxγy=4π is the absolute value of the carrier density in each
of the massive Dirac cones [18]. Each massive Dirac cone
produces an identical contribution to Dy, giving rise to a
factor of 2 already included in Eq. (18). This dipole is
orthogonal to the ferroelectric displacement direction in our
convention. The Berry curvature dipole has the same sign
for electrons and holes in this system and vanishes when
the chemical potential is in the gap of the massive Dirac
fermions. The typical scale of Dy for SnTe TCI is
ℏα=β ∼ 3 nm, where we used a Fermi velocity of vx ≈
vy ≈ 4 × 105 m=s [19], β ≈ 10 meV, and α ¼ 0.1vx [20].
The behavior of Dy is depicted in Fig. 1.
Another candidate 2D material to observe the quantum

nonlinear Hall effect is monolayer transition-metal dichal-
cogenides (TMDCs). Their large spin-orbit coupling and
lack of an inversion center produces substantial local Berry
curvatures [21,22]. The C3v symmetry of these crystals
would force the Berry curvature dipole to vanish. However,
uniaxial strain can reduce this symmetry so that a single
mirror operation survives, in which case the effect is
allowed. In fact, two copies of the model of Eq. (15), each
with a different gap, can describe the states near charge
neutrality within a k · p model [21], and when the shear
strain is applied along high-symmetry lines (see inset of
Fig. 1). s ¼ � would label valleys K and K0 in this
case. The anisotropic velocity term parametrized by α
would be proportional to the strain, much in the same
way as in strained graphene [23]. For TMDCs one
obtains a scale ℏα=β ∼ 0.2 Å, using a Fermi velocity of
v ≈ 4.5 × 105 m=s, a gap β ≈ 1.5 eV, and α ¼ 0.1v.
Last but not least, the Berry curvature dipole induced

nonlinear Hall effect should be present in a large class of
three-dimensional noncentrosymetric crystals. Interesting
candidates are the recently discovered Weyl semimetals in
the TaAs material class [24–27]. These materials are
noncentrosymmtric and have a polar axis, which allows
the quantum nonlinear Hall effect described by Eq. (12).

FIG. 1 (color online). Berry curvature dipole dependence on
chemical potential μ. Upper inset: Surface Brillouin zone of TCI
SnTe or (Pb,Sn)Se. The blue arrow indicates the direction of the
ferroelectric distortion. Lower inset: Brillouin zone of monolayer
TMDC. Dirac points are shifted away from K and K0 by shear
strain along the directions indicated by the blue arrows. Red
circles and dashed lines indicate massive Dirac points and the
surviving mirror symmetry, respectively.
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When tilted, a Weyl point generates a singular configura-
tion of Berry curvature, with a finite dipole moment whose
magnitude can be easily estimated from band structure
calculations. In addition, other polar materials such as
BiTeI with a strong Rashba-type spin-orbit coupling [28]
may also have large Berry curvature dipole moments.
These three-dimensional Weyl and Rashba materials pro-
vide promising platforms for the observation of the
quantum nonlinear Hall effect.
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