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Technological applications of many-body structures that emerge in gated devices under minimal
control are largely unexplored. Here we show how emergent Wigner crystals in a semiconductor
quantum wire can facilitate a pivotal requirement for a scalable quantum computer, namely, transmitting
quantum information encoded in spins faithfully over a distance of micrometers. The fidelity of the
transmission is remarkably high, faster than the relevant decohering effects, independent of the details of
the spatial charge configuration in the wire, and realizable in dilution refrigerator temperatures. The transfer
can evidence near unitary many-body nonequilibrium dynamics hitherto unseen in a solid-state device. It
could also be useful in spintronics as a method for pure spin current over a distance without charge
movement.
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Introduction.—Spin chains can facilitate several impor-
tant technological applications such as pure spin currents in
nonitinerant systems [1], quantum state transfer [2,3], and
quantum gates [4–6]. Most of the above applications are
facilitated by a nearly unitary dynamics of the spin chain.
Such dynamics is not only interesting for potential quantum
technology [7,8] but also fundamentally important to
address questions of equilibration, quantum thermodynam-
ics, and information propagation [9]. Thus, the physical
realization of artificial spin chains that have the potential
for long time unitary dynamics is an important quest—they
have been realized only very recently, and exclusively in
atomic physics systems: in cold atom systems [10,11], ion
traps [12,13] and Rydberg systems [14]. In the realm of
solid state, on the other hand, nonequilibrium dynamics of
engineered spin chains is far from unitary and primarily
driven by relaxation [15]. Although some bulk magnetic
materials [16,17], nitrogen vacancy center chains [4,6], and
Josephson junction arrays [18] hold the potential for long
chain unitary dynamics, that is still somewhat distant from
experimental realization. As far as the semiconductor realm
is concerned, permanently fabricated spin chain structures
with dangling bonds [19] or phosphorus dopants [20] may
also hold the potential, but is yet to be examined either
theoretically or experimentally. A natural question is thus
whether one can realize spin chains exhibiting nearly
unitary nonequilibrium dynamics in a feasible manner in
a two-dimensional electron gas (2DEG) and thereby open
the door to the aforementioned applications in solid state.
Individual electrons trapped in gate defined quantum dot

arrays have been proposed for simulating spin chains in the
limit of one electron in each dot [21]. Although the
fabrication of large quantum dot arrays is an active current

effort [22,23] and the complex electronics for gate address-
ing is also being designed [23], it is worth considering the
potential of simpler gated structures. In particular, self-
assembled charge configurations, such as Wigner crystals,
are naturally formed without demanding local control. By
controlling the density of electrons one can vary the
distance between the charges and consequently engineer
their exchange interactions. This, in comparison with
quantum dot arrays, allows for stronger exchange couplings
which then potentially provide more thermal stability, faster
dynamics, and less sensitivity to decoherence.
Here we show that emergent “self-assembled” electronic

spin chains arising due to Wigner Crystallization in quasi-
1D nanowires can be probed with two spatially separated
accessible interfaces (two quantum dots) so that nonequili-
brium dynamics and its applications can be probed.
Particularly we show how this setting can be used to
transfer spin qubits between two quantum dots separated by
μm scales, which is currently being actively considered as
an important problem, with very few suggested solutions
[24–27]. Additionally we suggest a feasible way of
observing this phenomenon through pA scale currents,
which, in turn, opens up a new option in low dissipation
spintronics for a spin current without a charge current.
Wigner crystalization.—By applying strong confining

potentials on a 2DEG one may trap a few electrons in a
quasi-1D region and effectively make a nanowire. In such
nanowires, when the electron density is below a critical value,
the Coulomb interactions between electrons overtakes their
kinetic energies resulting in a quasi-1D Wigner crystal in
which the electrons are extremely localized near to the
classical equilibrium configurations. In quasi-1D nanowires
where the electrons are strongly confined in two directions, a
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Wigner crystal is predicted to emerge when the average
electron-electron distance is greater than 4aB, where aB is the
Bohr radius [28].
Model.—We consider trappingN electrons (withN even)

in a quasi-1D region by using surface electrodes over a
2DEG in GaAs. The trapping potential is modeled as

VTRðx; yÞ ¼
1

2
m�Ω2y2

þ h0

�
e−½ðx−d=2Þ2=2w2

out� þ e−½ðxþd=2Þ2=2w2
out�
�

wherem� is the electron effective mass, Ω is the strength of
the transverse potential, and the two Gaussian potentials
with height h0 and width wout define a nanowire of length d
extending between x ¼ �d=2. Two small quantum dots,
for trapping single electrons, are formed at both ends of the
wire by applying proper voltages to the gates. The quantum
dots are modeled by the following potential:

VQDðx; yÞ ¼ hb

�
e−½ðxþd=2−lÞ2=2w2� þ e−½ðx−d=2þlÞ2=2w2�

�

þ 1

2
m�Λ2ðe−½ðx−x0Þ2=2σ2�ðy − y0Þ2

þ e−½ðxþx0Þ2=2σ2�ðyþ y0Þ2Þ;

where the first two Gaussian potentials with heights hb and
width w, centered at the distance l from the boundaries of
the wire, create two quantum dots at both sides of the
nanowire and the potentials in the second line break the
mirror symmetry by displacing the minima in the two
quantum dots in opposite directions. The symmetry broken
system will have a single equilibrium position for electrons

and thus numerical convergence is easier to reach.
Choosing appropriate values of the parameters x0, y0,
and σ is discussed in the Supplemental Material [29]
(which includes extra Refs. [30–34]).
We consider N ¼ 10 electrons trapped over a distance

d ¼ 1.25 μm, such that the quantum dots confine one
electron each and the remaining eight electrons are placed
in the wire as shown in Fig. 1(a). The whole potential is

VðRÞ ¼
XN
k¼1

�
VTRðrkÞ þ VQDðrkÞ þ

X
j<k

e2

4πϵjrk − rjj
�
:

The barrier hb is varied from 3 meV to 50 μeV to decouple
or couple the quantum dots to the wire, respectively. Thus,
the two endmost electrons can act as sender and receiver
when sending quantum information through the chain.
Unlike the middle electrons, we assume full control over
these two end electrons for initialization and measurement.
Exchange couplings.—At low temperatures the dynam-

ics of the Wigner crystal is approximately governed by the
multi-spin-exchange (MSE) Hamiltonian [35]. To calculate
the exchange couplings in this Hamiltonian we exploit the
semiclassical path integral instanton method [36–40]. This
approach is applicable for the regimes where the quantum
effects are small, like the case for Wigner crystals where the
electrons are well separated [41] (see the Supplemental
Material [29] for more details). While our methodology
assumes a closed system it is potentially amenable to
extension to directly incorporate an environment following
the methodology of Ref. [42].
Using the instanton method, it was found that only

processes involving up to fourth-nearest neighbor pairwise
exchange and up to 4-body exchange were significant. With
this restriction, the full spin Hamiltonian can be written (see
Supplemental Material for the details [29])

FIG. 1 (color online). (a) Transfer protocol for an even number of electrons in which hb changes from 3 meV to 50 μeV
instantaneously to induce dynamics. (b) Classical ground state equilibrium positions for ten electrons with Ω ¼ 550 μeV=ℏ. Coupling
parameters (in the unit of μeV) are shown for the different 2- and 4-body exchange processes. Since the couplings are symmetric, only
half of each coupling is given. (c) Similarly to (b), with Ω ¼ 440 μeV=ℏ.
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H ¼
X4
r¼1

XN−r

n¼1

Jn;nþrσn · σnþr þ
X

j<k<l<m

Jjklmϒjklm; ð1Þ

where σn ¼ ðσxn; σyn; σznÞ is the Pauli vector acting on
site n and Υjklm≔ðσj · σkÞðσl · σmÞ þ ðσj · σmÞðσk · σlÞ−
ðσj · σlÞðσk · σmÞ. Exchange couplings for Ω¼550μeV=ℏ
and Ω ¼ 440 μeV=ℏ are given in units of μeV in the tables
next to each charge configurations of Figs. 1(b) and 1(c).
The general features are low couplings at the boundary (due
to the barrier between the dots and the chain) and a U-
shaped coupling along the chain. The next-nearest neighbor
couplings are always ferromagnetic (i.e., Jn;nþ2 < 0) for
the linear configuration while for the zig-zag geometry they
show a more complex pattern varying from negative to
positive values. The U-shaped feature of the couplings is
because the off-center electrons are pushed towards the
boundaries due to an unbalanced Coulomb repulsion from
the majority of electrons on the opposite side. This makes
the effective distance between the electrons shorter in the
boundaries and thus results in stronger couplings.
Quantum communication.—We assume that the quantum

dots are initially decoupled from the wire (i.e., hb is large).
Furthermore, we consider zero temperature so that the
electrons are confined to their lowest vibrational mode and
are prepared in their spin ground state jGSi. The electron in
one quantum dot is prepared in an arbitrary quantum spin
state jψi ¼ cosðθ=2Þj↑i þ eiϕ sin θ=2j↓i, which is sup-
posed to be transferred to the opposite dot, which confines
an electron in unpolarized mixed state I=2. The initial state
of the system is thus ρð0Þ ¼ jψihψ j ⊗ jGSihGSj ⊗ I=2.
The barriers are then simultaneously lowered (i.e., hb is
lowered) in order to start a unitary dynamics under the
action of the new Hamiltonian. One can compute the
density matrix of the last electron ρNðtÞ by tracing out
the others. To quantify the quality of transfer one can
compute the fidelity FðtÞ ¼ hψ jρNðtÞjψi which is inde-
pendent of θ and ϕ due to the SU(2) symmetry of the
Hamiltonian.
In Figs. 2(a) and 2(b) we plot FðtÞ as a function of time

for the two charge configurations with Ω ¼ 550 μeV=ℏ
(linear chain) and Ω ¼ 440 μeV=ℏ (zig-zag chain). It is
clear from these figures that the fidelity peaks at a time
t ¼ tm and the takes its maximum value Fmax ¼ FðtmÞ.
Although the linear chain gives a faster dynamics with tm ≃
4 ns (due to fairly larger couplings) in comparison with the
zig-zag charge configuration with tm ≃ 8 ns, the maximum
fidelity Fmax is remarkably high for both configurations,
certainly larger than a uniform chain [43]. These results
illustrate the key point that the details of the charge
configurations are not important for the quality of spin
transport. To see the scalability, we plot Fmax as a function
of N in Fig. 2(c), keeping the density of electrons fixed and
using only nearest-neighbor couplings since these are by
far the largest and computing higher order interactions

becomes computationally prohibitive for > 10 electrons.
As the figures show the fidelity Fmax remains very high
even for chains up to N ¼ 20 electrons.
Explanation.—To understand the remarkably high fidel-

ities achieved through the time evolution of the Wigner
crystal, one has to consider the nearest-neighbor couplings,
which dominate the HamiltonianH. As shown in the tables
in Figs. 1(b) and 1(c), the couplings J2;3 (which are
identical to JN−2;N−1) are almost 4 times stronger than
the couplings J1;2 (which are identical to JN−1;N) in both
charge configurations. This implies that the ground state
and first excited state of the Hamiltonian H show delo-
calized strong correlations between the boundary electrons.
By computing the reduced density matrix of the two ending
spins ρ1N from the ground state of H one can see that
hψ−jρ1;N jψ−i > 0.8, where jψ−i is the singlet state, for
both charge configurations. Similarly, by computing ρ1N
from the first excited state of H one gets
hψþjρ1;N jψþi > 0.9, where jψþi is the triplet state. The
delocalized eigenvectors of the Hamiltonian create an
effective RKKY-like interaction between the two boundary
electrons in the dots [44,45], namely, Heff ¼ Jeffσ1 · σN
where Jeff ¼ ΔE=4 in which ΔE stands for the energy gap
of the Hamiltonian H. In Figs. 2(a) and 2(b) the time
evolution of average fidelities using both Heff and H are
plotted which shows that the effective Hamiltonian can
qualitatively explain the real dynamics of the system. In
fact, the effective model becomes more precise by decreas-
ing the boundary couplings J12 and JN−1;N .
Imperfections.—So far, we have assumed that the system

operates at zero temperature and thus the electrons in the
wire are initialized in their ground state. In order to
guarantee that the proposed protocol remains valid at finite
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FIG. 2 (color online). Average fidelity Fav as a function of time,
when hb suddenly changes from 3 meV to 50μeV, using both real
and effective Hamiltonians for: (a) the linear chain (Ω ¼
550 μeV=ℏ); and (b) the zig-zag chain (Ω ¼ 440 μeV=ℏ).
(c) Fmax versus N. (d) The variation in Fmax when a random
magnetic field of variance Bnuc is included in the Hamiltonian.
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temperature T, one has to satisfy kBT < ΔE, where kB is
the Boltzmann constant. For the given set of couplings the
energy gaps are ΔE≃ 0.77 μeV for the linear and ΔE≃
0.45 μeV for the zig-zag configurations giving the range of
temperature as kBT ∼ 5–10 mK which can be achieved in
current dilution refrigerators [46].
In GaAs heterostructures the electron spins interact with

the nuclear spins of the host material. Because of the very
slow dynamics of nuclei spins in comparison to the time
scales of our protocol one can describe their average effect
on electron spin n as an effective random magnetic field
B̂n. While the direction of this field is fully random its
amplitude has a Gaussian distribution [47]

PðB̂Þ ¼ exp½−B̂ · B̂=2B2
nuc�=ð2πB2

nucÞ3=2; ð2Þ

in which 3B2
nuc is the variance of the distribution. The total

Hamiltonian thus changes as

H → H þ
XN
n¼1

B̂n:σk: ð3Þ

In Fig. 2(d) we plot the maximum fidelity Fmax versus Bnuc
which shows the destructive effect of the hyperfine inter-
action. The linear configuration performs better for larger
values of Bnuc since the faster dynamics reduces the time
exposed to nuclear spins. A realistic value for Bnuc is
2–6 mT (i.e.,∼0.07–0.23 μeV) [48], at which the fidelity of
Fmax ≃ 0.8–0.95 is attainable. Using spin-orbit coupling
one may effectively suppress Bnuc to 35 neV [49].
At experimental temperatures (∼50 mK) thermal phonons

are absent in the material [50]. Moreover, the bulk phonon
wavelengths (∼μm) exceed electron wavelengths (∼20 nm)
so much that the electrons do not couple to them either.
However, sudden quench in hb may cause the electrons to
jiggle around their positions causing fluctuations in exchange
interactions. As shown in the Supplemental Material [29],
these high frequency vibrations (f ≃ 100 GHz) are inte-
grated out during the transmission time tm ≃ 5 ns.
Experimental realization.—The quantum dot-quantum

wire-quantum dot system can be realized in a III-V material
such as GaAs=AlGaAs heterostructure [51], using gates
and the quantum point contacts technique, as shown in
Fig. 3. We assume that the quantum wire has achieved a
state of Wigner crystallization [52]. Spin initialization in
the left dot and read-out in the right dot after the transfer
time, can be performed using demonstrated techniques
[48,53] such as singlet-triplet charge measurements by
appending double dots to both ends of the wire. However,
here we show how transport measurements can also probe
our mechanism by effectively detecting the transfer of a
spin current. The prototype of this measurement consists of
a left electron pump [54–56] injecting polarized electrons
(say, from a standard source [51,57]) whereas the right
pump injects unpolarized electrons in the respective

quantum dots as shown in Fig. 3. As the electrons are
injected into the dots they interact with the electrons in the
quantum wire as the barrier height is reduced and their
quantum state is swapped. Thus upon exiting the dots, the
initially polarized electrons will be unpolarized and vice-
versa. As the interaction time for spin swap is about tm ∼
4 ns (tm ∼ 8 ns) for the linear (zig-zag) configuration the
electrons must stay in the dot for such time. This implies
that the pumps have to inject a current of 20 pA–40 pA
depending on the configuration of electrons in the quantum
wire. A spin polarization of the current carried off from the
right dot by the right pump could then be detected by the
halving of the conductance through a quantum point
contact in series with the right dot.
Discussion and conclusions.—We have shown that

entirely within the remit of gate defined structures, one
can use a Wigner crystal in a quantum wire for transferring
spin qubits between quantum dots separated by microm-
eters reaching very high fidelities. Compared to varied
proposals for mediating between separated quantum dot
spin qubits [24–27], the proposed mechanism can have
various advantages. For example, it could have higher
speed making it more resilient to decoherence, simpler
fabrication compared to hybrid systems, and a greater
spatial extension over few electron quantum dot mediators.
Furthermore, thanks to the self-assembled nature of the
Wigner crystal, our scheme does not require complex
electronics to artificially create a regular structure of
exchange coupled spins. Our analysis shows the proposed
protocol can operate in current dilution refrigerators, and
remarkably the details of the charge configuration does not
influence the performance of the system, adding additional
robustness to the device fabrication. It also opens an avenue
in spintronics by facilitating the spatial transport of a spin

FIG. 3 (color online). Schematic diagram of a possible physical
implementation of the mechanism in GaAs. Polarized electrons
(green circles) are pumped into the left quantum dot, while
unpolarized electrons (red circles) are pumped into the right dot.
Interaction with the confined electrons in the wire (orange circles)
swaps the electron spins and thus exchanges the polarization of
the currents. A spin polarisation measurement on the output
current can detect the transfer of polarized electrons.
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current without a charge current, and provides a smoking
gun for the near unitary nonequilibrium dynamics in many-
body solid-state systems. Alternative realizations of Wigner
crystals, in liquid helium [58], ion traps [59], and carbon
nanotubes [60], can also be used for implementing our
mechanism.
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