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We report on the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up
to four fermionic atoms in a one-dimensional trap. These chains are stabilized by strong repulsive
interactions between the two spin components without the need for an external periodic potential. We
independently characterize the spin configuration of the chains by measuring the spin orientation of
the outermost particle in the trap and by projecting the spatial wave function of one spin component on
single-particle trap levels. Our results are in good agreement with a spin-chain model for fermionized
particles and with numerically exact diagonalizations of the full few-fermion system.
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The high control and tunability of ultracold atomic
systems offer the fascinating possibility to simulate quantum
magnetism [1], a topic of fundamental importance in
condensedmatter physics [2]. Systems of spin-1=2 fermions
with antiferromagnetic (AFM) correlations are of particular
interest due to the observation of high-temperature super-
conductivity in cuprates with AFM correlations [3]. The
experimental implementation of the necessary exchange
couplings is usually realized by superexchange processes of
neighboring atoms in the Mott-insulating state of a deep
optical lattice. Superexchange couplings were measured in
both bosonic [4] and fermionic double-well systems [5] and
short-range AFM correlations of fermionic atoms were
detected in various lattice geometries [6–8]. Furthermore,
superexchange processeswere used to study the dynamics of
spin impurities above the ferromagnetic (FM) ground state
of bosons in the Mott-insulating state of a one-dimensional
lattice [9]. Bosonic atoms were also used to simulate AFM
Ising spin chains in a tilted optical lattice [10,11]. However,
the AFMground state of spin-1=2 fermions in a deep optical
lattice has so far not been realized due to the very low energy
scale associated with the superexchange coupling.
This problem can be circumvented in 1D systems, where

quantum magnetism can be simulated without an optical
lattice [12–14]. In the regime of strong interactions, the
spatial wave function of both fermions [15] and bosons
[16–18] can be mapped on the wave function of spinless
noninteracting fermions [Fig. 1(a)]. In this so-called
fermionization limit, the strong interactions lead to the
formation of a Wigner-crystal-like state [19–21], which
has a highly degenerate ground state when the particles
have multiple internal degrees of freedom [Fig. 1(b)]
[20–23]. Close to the limit of fermionization, the structure
of the quasidegenerate ground-state multiplet [24–33]
is determined by an effective Sutherland spin-chain

Hamiltonian, which for two-component systems becomes
a Heisenberg model [12,19,21,29,32–34].
In this Letter, we report on the realization of Heisenberg

spin chains of N↑ spin-up and N↓ spin-down particles with
ðN↑; N↓Þ ¼ ð2; 1Þ, (3, 1), and (2, 2). We show that under an
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FIG. 1 (color online). Heisenberg spin chain of three fermions.
(a) Sketch of two spin-up and one spin-down atom with diverging
1D coupling constant (g1D ¼ �∞) in a harmonic trap. If the
relative spatial wave function of two distinguishable fermions is
symmetric, the strong interactions induce a cusp in the relative
wave function of the two particles (left-hand side). This causes
them to separate like identical fermions (right-hand side). In this
fermionization limit the system forms a Wigner-crystal-like state
with fixed ordering of the particles. (b) Single-particle contribu-
tions to the total (gray), the spin-up (green), and the spin-down
density (blue) of two spin-up and one spin-down atom in the
fermionization regime in a harmonic trap. Like in a Wigner
crystal, the total densities of the ferromagnetic (left), the
intermediate (middle), and the antiferromagnetic state (right)
are identical, while their spin densities differ and are determined
by a Heisenberg spin-chain Hamiltonian. (c) Densities of three
particles before (left) and after (right) the tunneling of one atom
with energy E out of a tilted trap. At fermionization, only the
rightmost particle can leave the trap in the tunneling process.
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adiabatic change of the interaction strength the noninter-
acting ground states of these systems evolve into the
respective AFM states in the limit of infinitely strong
repulsion [24,28]. We identify the AFM states by two
independent measurements. First, we use a tunneling
technique to measure the spin orientation of the outermost
particle of the spin chain. Second, we probe the spatial
wave function of the spin-down atom in the (2, 1) and (3, 1)
system by projecting it on single-particle trap levels.
In our experiments, we realize a spin-1=2 system by

trapping ultracold 6Li atoms in an elongated optical dipole
trap [35,39] in their two lowest hyperfine states j↑i≡
jj ¼ 1=2; mj ¼ −1=2; I ¼ 1; mI ¼ 0i and j↓i≡ jj ¼ 1=2;
mj ¼ −1=2; I ¼ 1; mI ¼ 1i. As the energy of the atoms is
much smaller than the lowest transverse excitation energy
in the trap, their dynamics are restricted to the longitudinal
axis of the trap. In such a quasi-1D system, the interaction
strength between ultracold atoms of opposite spin is
determined by the 1D coupling constant g1D, which
diverges at a confinement-induced resonance (CIR) when
the 3D scattering length a3D approaches the harmonic
oscillator length of the radial confinement [35,40]. We use a
magnetic Feshbach resonance to control a3D and therefore
are able to smoothly tune g1D across the CIR. At the same
time, scattering between fermionic atoms of the same spin
component is forbidden. Throughout this Letter, g1D will be
given in units of a∥ℏω∥, where a∥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω∥

p
and ω∥ are

the harmonic oscillator length and the trap frequency in the
longitudinal direction and m is the mass of a 6Li atom.
We start our experiments by preparing a (2, 1), (3, 1), or

(2, 2) system in the noninteracting many-particle ground
state of the trap [35,39]. By changing the magnetic offset
field with a constant rate, we ramp the system into the
fermionization regime close to the CIR (Fig. 2), where it
forms a spin chain. Below the CIR, g1D is large and positive
and the system is in the Tonks regime of strong repulsion
[17,18]. When crossing the CIR, g1D changes sign from
þ∞ to −∞ while the system continuously follows the
so-called upper branch [24] into the super-Tonks regime of
strong attraction [15,41,42] (Fig. 2). In the super-Tonks
regime, the system is in an excited state, which is
metastable against decay into bound states.
In a first set of measurements, we identify the states of the

spin chains by probing the spin distributions in the trap.Here,
we make use of the fact that in the fermionization regime the
atoms become impenetrable and therefore their ordering
along the longitudinal axis of the trap is fixed. This allows us
to determine the spin orientation of the outermost particle in
the trap in a tunneling measurement. To do this, we tilt the
trap as shown in Fig. 1(c) and thereby allow atoms to tunnel
out of the trap.We carefully adjust the trap parameters during
the tunneling process, to let exactly one atom [for the (2, 1)
and the (3, 1) systems] or two atoms [for the (2, 2) system]
tunnel [35]. Finally,wemeasure the number of spin-up atoms
in the final state to determine the spin of the atoms that left the
trap during the tunneling process [35]. We define spin-down
tunneling as the process in which all spin-down atoms tunnel

out. By repeating this measurement at different magnetic
offset fields, we deduce the probability of spin-down
tunneling, P↓ð−1=g1DÞ, as a function of the inverse 1D
coupling constant, as shown in Fig. 3.
As shown in Fig. 1(b) for a (2, 1) system in a harmonic

trap, the different states of the spin chain can be uniquely
identified by their spin densities [12], specifically by the
probability of the outermost spin to point downwards.
Since in the fermionization regime the ordering of the
atoms in the trap is fixed, only the outermost atom can
escape during the tunneling process. Exactly at the CIR,
the probability of spin-down tunneling should therefore
directly reveal the state of the spin chain [12,29,33]. Away
from resonance, the probability of spin-down tunneling is
also influenced by the energy of the final in-trap states,
favoring final states with lower energy, as indicated by the
blue arrows in Fig. 2. To identify the spin states throughout
the entire spin-chain regime, we compare our data to the
results of a tunneling model, which in the following section
is explained for a (2, 1) system.
In our tunneling model, the initial states are eigenstates

of a Heisenberg spin-chain Hamiltonian [35], where the
exchange couplings Ji between neighboring spins depend on
the trap geometry and on the inverse 1D coupling constant
[12]. For the (2, 1) system with repulsive interactions and
a symmetric trap ðJ1 ¼ J2 > 0Þ, these eigenstates are the
AFM ground state, the intermediate (IM) state, and the FM
state, as shown in Fig. 1(b). During the tunneling process the
trap is tilted as shown in Fig. 1(c) and therefore the density
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FIG. 2 (color online). Energies in spin-chain regime. Eigene-
nergies of two (green) and three (red) strongly interacting spin-
1=2 fermions in a 1D harmonic trap as a function of the
interaction strength. In the Tonks regime, the antiferromagnetic
states are the ground states of each multiplet, while the ferro-
magnetic states have the highest energies. In the super-Tonks
regime, the ordering of the energy levels is inverted. Close to
the confinement-induced resonance (CIR), the energy shifts
are linear in −1=g1D and can be determined by a Heisenberg
spin-chain Hamiltonian. The system is initially prepared in the
noninteracting ground state of the three-particle system at
−1=g1D ¼ −∞, which evolves, for increasing −1=g1D, into the
antiferromagnetic state around the CIR (red solid line). During a
ramp across the CIR, the system stays in the antiferromagnetic
state, since all eigenstates of the system are decoupled. The blue
arrows indicate the predominant channels for the tunneling of one
atom below (left) and above (right) the fermionization regime.
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is not symmetric. Hence, the exchange couplings are not
identical anymore ðjJ1j > jJ2jÞ, which leads to a coherent
mixing of theAFMand IMstate during the tunneling process
[35]. We calculate a probability of approximately 8% for the
rightmost spin of the AFM state in the tilted trap to point
downwards. This is in good agreement with the blue data
points in Fig. 3(a) that cross the CIR at P↓ ≈ 10%.
Away from the CIR, the eigenstates of both the three-

particle and the two-particle spin chains are nondegenerate
(Fig. 2). In this case, the energies of the initial three-particle
state jii and the final two-particle state jfi involved in the
tunneling process are important, since their difference
determines the energy E of the tunneling particle. The
tunneling rate of the particle that leaves the trap is strongly
affected by its energy and can be calculated as

Ti;f ∝ jhijf; tij2Ee−2γðEÞ; ð1Þ
where jf; ti ¼ jfi ⊗ jti with jti indicating the spin ori-
entation of the tunneling particle. The tunneling parameter
γ is determined by means of a WKB calculation [35]. The
probability to tunnel from state jii to state jfi is given by

Pi;f ¼
Ti;f

ðPf0Ti;f0 Þ
; ð2Þ

where the sum is over all possible final states jf0i.
Using Eq. (2), we calculate the probabilities Pi;j↑;↑i of

tunneling into the spin-polarized final state [red lines
in Fig. 3(a)], which is equivalent to the probability of

spin-down tunneling (P↓). Far below the CIR, the energy
dependent term Ee−2γ dominates the outcome of the
tunneling rates [Eq. (1)]. Therefore, tunneling into the
AFM two-particle ground state ðj↑;↓i − j↓;↑iÞ= ffiffiffi

2
p

is
strongly favored if its spin overlap to the initial state is
not zero. This leads to a limiting value of P↓ ¼ 0 for initial
AFM and IM states. Above the resonance, the energy
ordering of the two-particle FM and AFM states is reversed
and tunneling into the FM states is predominant (Fig. 2)
[43]. Here, P↓ is determined by the ratio of the spin
overlaps between the first two spins of the initial states and
the FM two-particle states j↑;↑i and ðj↑;↓i þ j↓;↑iÞ= ffiffiffi

2
p

.
The comparison of the theoretically predicted P↓ of the

AFM state in the tilted trap [red solid line in Fig 3(a)] with
the experimental data (blue points) shows good agreement,
while the FM(red dashed line) and IM (red dotted line) states
are clearly excluded. We therefore conclude that before
tunneling both below and above the CIR the system is in the
AFM state. The gray points at−1=g1D ≈ 0 indicate a narrow
resonance effect that couples the AFM state to the IM state
of the spin chain. Since this resonance is accompanied
by strongly enhanced three-body losses [35], we suspect
it to be caused by a coupling of the AFM and the IM states
via a molecular state with center-of-mass excitation. The
coupling to such molecular states is strongly enhanced
by the anharmonicity of our tilted trap [44].
For theAFMstate of the (3, 1) system, a similar calculation

predicts P↓ ≈ 1% on resonance and a saturation value of
P↓ ≈ 75% deep in the super-Tonks regime [35]. As shown in
Fig 3(b), the general trend of our measurements agrees with
this prediction for the AFM state, but in the super-Tonks
regime, there is a significant deviation. The reason for this
deviation is that the calculation assumes an adiabatic low-
ering of the potential barrier. As a result, the tunneling
energies of all tunneling channels are always well below the
barrier maximum. We believe that this condition is not
fulfilled for the (3, 1) system in the super-Tonks regime,
where an especially low potential barrier was used for the
tunneling measurement. Indeed, if we model a nonadiabatic
lowering of the potential barrier, the contribution from
tunneling into the IM state reduces P↓ to values that are
compatible with the experimental results [35]. In order to
study the spin configuration of the balanced (2, 2) system,we
adapt the previous procedure and let two atoms tunnel out of
the trap. Here, P↓ is defined as the probability to end up in
state j↑;↑i, where both spin-down atoms tunneled out of the
trap. Again, the predicted P↓ ≈ 4% on resonance and the
limiting value of P↓ ≈ 33.3% in the super-Tonks regime are
ingoodagreementwith the experiment, as shown inFig. 3(c).
To independently confirm the results of our measurement

of the spin distribution, we perform a second set of mea-
surements that directly probes the spatial wave function of the
system. As shown in Fig. 1(a), the relative spatial wave
function between identical spins always exhibits a smooth
zero crossing, while between distinguishable spins with
strong interactions it can exhibit a cusp. The cusps lead to
occupancies of high-energy trap levels, while the zero

FIG. 3 (color online). Probing the spin distribution. Tunneling
probabilities of the spin-down atom in a (2, 1) system (a) and a
(3, 1) system (b) and tunneling probability of both spin-down
atoms in a (2, 2) system (c) as a function of the interaction
strength. The red lines are the solutions of a tunneling model
for the antiferromagnetic (solid), the ferromagnetic (dashed), and
the intermediate state (dotted). The gray points in (a) indicate a
narrow resonance between the antiferromagnetic and the inter-
mediate state of the (2, 1) system close to −1=g1D ¼ 0. Error bars
denote the 1σ statistical uncertainties.
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crossings require only theoccupationof the lowest trap levels.
In general, the more symmetric the spatial wave function
of a state is, the more cusps it will contain. Therefore, the
occupation-number distribution on single-particle trap levels
directly reveals the spin configuration of the system.
To probe this distribution, we prepare an interacting

(2, 1) or (3, 1) system and remove all atoms of the spin-up
component from the trap with a short pulse of light. The
light is σ− polarized and resonant to the D2 transition of
the spin-up atoms (j↑i¼jj¼1=2;mj¼−1=2;I¼1;mI¼0i
to jj ¼ 3=2; mj ¼ −3=2; I ¼ 1; mI ¼ 0i). We confirm that
within our experimental fidelity all spin-up atoms are
removed from the trap by the light pulse, while only 3%
of the population of spin-down atoms is lost. With 15 μs
the duration of the light pulse is significantly shorter than
the inverse longitudinal trap frequency of approximately
100 μs, which sets the time scale of redistribution along
the spin chain. This process therefore projects the spin-
down component of the wave function of the interacting
(N↑; 1)-particle system on single-particle trap levels.
Finally, we measure the mean occupancies on the single-
particle trap levels [35]. In Fig. 4 we compare the mean
occupancies of the spin-down atom for the (2, 1) and the
(3, 1) systems in the super-Tonks regime with the theo-
retical prediction that we obtained by numerically diagonal-
izing the many-body Hamiltonian for these systems. The
comparison shows that both systems are in the AFM spin
state and thereby confirms that our systems follow this state
throughout the fermionization regime.

In conclusion, we have prepared antiferromagnetic
Heisenberg spin chains of up to four atoms in a one-
dimensional trap and independently probed the spin
distributions and spatial wave functions of the systems.
This constitutes a direct observation of quantummagnetism
beyond two-particle correlations in a system of ultracold
fermionic atoms. By using the methods developed in
Ref. [5], multiple spin chains can be realized and coupled,
which offers a new approach to studying two- and three-
dimensional quantum magnetism.
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