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The blast caused by an intense explosion has been extensively studied in conservative fluids, where the
Taylor–von Neumann–Sedov hydrodynamic solution is a prototypical example of self-similarity driven by
conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-
similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad
class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we
derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics
simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation
instability, also self-similar, which disrupts the blast boundary. These generic results may apply from
astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and
hydrodynamic approaches of shock waves.
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A blast wave follows the rapid and localized release of a
large amount of energy in a medium. The physics com-
munity got seasonably interested in the dynamics of such
shocks in air in the early 1940s. Taylor [1], von Neumann
[2] and Sedov [3] independently understood that, as a result
of the global conservation of mass and energy, the
extension R of the blast had to grow with time like a
power law tδ, with δ ¼ 2=5 [or 2=ðdþ 2Þ in dimension d]
[4]. From a few publicly available snapshots of the blast at
different times, Taylor could estimate within 10% the
strength of the Trinity detonation in 1945, at the time
classified information [5].
Remarkably, the hydrodynamic description of the flow

inside the blast, now known as the Taylor–von Neumann–
Sedov solution (TvNS), is self-similar in time, depending
only on the rescaled radial distance r=RðtÞ. This similarity is
of the first kind [5], i.e., driven by global invariants, and all
exponents can be derived by dimensional analysis. This
solution found widespread relevance beyond its initial
realm, notably in plasma physics to describe laser-induced
shocks [6,7] and in astrophysics for the evolution of super-
nova remnants [8]. However, it proves essential for a wealth
of applications to relax some of the conservation laws [5,9],
especially allowing for energy production or dissipation; on
the shock boundary (e.g., a chemical reaction front) or in the
bulk (e.g., collisional or radiative losses). This is usually
expected to entail self-similarity of the second kind, where
scaling exponents are no longer globally fixed, but depend
continuously on parameters of the dynamics [5].
The subject of our inquiry, a blast with bulk

energy dissipation, runs contrary to that expectation.

Understanding its similarity properties requires connecting
two levels of analysis, coarse-grained and microscopic, that
have remained largely impervious to each other. The
abundant literature following the TvNS model has focused
on global scaling laws or hydrodynamic models.
Meanwhile, the study of granular gases [10] provides
prototypical dissipative media where experiments [11,12]
and particle-based simulations [13] have been performed,
but a continuum view is missing. It is our purpose here to
bridge this gap [14]. We provide an analytical under-
standing for three numerical observations: the spatial
profiles for hydrodynamic fields, the scaling regimes
exhibited by RðtÞ, and a previously unreported corrugation
instability that distorts the shock wave at late times.
Unraveling the wave structure is key in explaining these
properties; Fig. 1 summarizes its main features, with a
dense shell divided in three regions. The corrugation
instability, also self-similar, is unique to the dissipative
blast and differs significantly from those described in
various other blast waves [16,17]. We will argue that,
under broad assumptions, our results are largely indepen-
dent of the mechanism at play in energy dissipation.
Model and previous results.—Our model system is a

granular gas of identical spherical grains with radius σ and
unit mass, where inelastic binary collisions conserve
momentum but dissipate kinetic energy. Core results will
not depend on specific dissipation mechanisms; hence, we
opt for simplicity: energy loss is quantified by a fixed
restitution coefficient 0 ≤ α ≤ 1 [10]; encounters are dis-
sipative when α < 1 and energy conserving (elastic) for
α ¼ 1. We set a break-shot initial condition, where all
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grains are at rest except within a small region [13,15]. A
cascade of collisions follows, with an ever growing number
of particles in motion, which forms the blast as observed in
Fig. 1. We define its radius RðtÞ as the distance from the
center to the innermost particle at rest, and the shock front
as all moving particles that count grains at rest among their
nearest neighbors. Since the external medium is motionless,
strong shock (infinite Mach number) conditions are
ensured for any initial energy release [18]. A priori, the
dynamics are specified by two parameters: α and the
volume fraction ϕrest ¼ nrestVdðσÞ, where nrest is the num-
ber density of particles in the gas at rest, and VdðσÞ is the
volume of a grain in dimension d. In the remainder,
numerical results are obtained from molecular dynamics
(MD) simulations [10,19].
The first property of interest is the scaling law(s) obeyed

by the radius RðtÞ. As the TvNS scaling crucially hinges on
energy conservation, relaxing the latter generically causes
self-similarity to break down or cross over to the second
kind—it is then sensitive to microscopic parameters and
derivable through methods such as renormalization, but not
dimensional analysis [5]. However, following an argument
due to Oort [21] for astrophysical systems, a blast in a gas
with bulk dissipation should tend to form a thin, hollow
shell that slows down only by accreting more material. Its
total radial momentum, of order RddR=dt, is thus constant,
at odds with the energy-conserving case (as explained
below). This implies R ∝ tδ with δ ¼ 1=ðdþ 1Þ, or 1=4 in
three dimensions—smaller than its conservative counter-
part 2=ðdþ 2Þ. This solution is known as the momentum
conserving snowplow (MCS) [8] and is self-similar of the
first kind. Recent numerical studies of granular gases have
confirmed both this scaling law and the hollow structure of

the blast for any α < 1, although the shell is thick due to the
high densities considered [13].
Hydrodynamic description.—Previous works on the

granular blast have stopped short of investigating its spatial
structure beyond these simple arguments. We turn to a
continuum description, which will shed light on the
peculiar shell in Oort’s argument, and reveal its long-term
instability. To establish a closed set of hydrodynamics
equations, we define the granular temperature (or energy
of random motion) of the medium through the variance of
local velocity fluctuations [10,22–24]. The coupling
between this temperature field ΘðrÞ and the density and
velocity fields nðrÞ and uðrÞ is derived in the dense fluid
transport framework for inelastic hard spheres [25], which
generalizes earlier descriptions of dilute systems [22,26]

∂tnþ∇ðnuÞ ¼ 0; ð1aÞ

ð∂t þ u:∇Þuþ 1

n
∇:p ¼ 0; ð1bÞ

nð∂t þ u:∇ÞΘþ 2

d
ðp · ∇Þ · u ¼ −Λ: ð1cÞ

The energy sink term takes the form [25,27]

Λ ¼ ωð1 − α2ÞnΘ ð2Þ

and ω ¼ ω0nσd−1Θ1=2 is the local collision frequency,
proportional to the average relative velocity and the inverse
mean free path, with ω0 a dimensionless constant. These
equations are closed by specifying the pressure tensor p
with a constitutive relation, discussed below, which is
safely taken of zeroth order in gradients, neglecting heat
conduction [28].
In the particular elastic case (α ¼ 1, hence Λ ¼ 0) with

isotropic pressure p ¼ pI (I being the identity matrix), the
Euler equations for a perfect fluid are recovered. Within the
blast, the fields then assume a scaling form

nðr; tÞ ¼ nrestMðλÞ; uðr; tÞ ¼ r
t
VðλÞ;

Θðr; tÞ ¼ r2

t2
TðλÞ; pðr; tÞ ¼ nrest

r2

t2
PðλÞ; ð3Þ

where r ¼ rer denotes the position relative to the center of
the blast with r ¼ jrj, and λ ¼ r=RðtÞ is the scaling
variable. The profiles M, V, T, and P defined by Eq. (3)
are dimensionless, isotropic and time-independent, and can
be evidenced throughout the self-similar blast expansion by
appropriately rescaling the density, velocity, temperature,
and pressure fields. With the further assumption of an ideal
gas constitutive relation p ¼ nΘ, Eqs. (1) and (3) together
admit the classic TvNS solution [1–3,5]. It is noteworthy
that there is a unique velocity scale in the elastic problem: u
and

ffiffiffiffi
Θ

p
exhibit the same scaling in RðtÞ=t, meaning that

FIG. 1 (color online). Section of the blast wave: cartoon (top)
and hard sphere MD simulation (bottom). Dissipation causes
particles to accrete into a dense, hollow shell. Equations (5)–(7)
reveal its layered structure. First, the shock front where particles
from the blast collide and mix with those at rest, creating
incoherent motion. Then, a fixed-width cooling region (CR)
where further compression occurs as temperature is dissipated,
and finally a self-similar cold fluid region where velocities are
well aligned, around a central cavity. This stands in stark contrast
with the elastic case, where the bulk of the blast is comprised of a
single, entirely self-similar region.
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coherent and incoherent motion remain coupled. This
solution exhibits a simple structure, with a boundary layer
of fixed size (the shock front) around an isotropic, self-
similar bulk. The front, where discontinuities in the hydro-
dynamic fields occur, can be defined microscopically as the
thin mixed region where mobile and immobile particles
coexist.
Results and discussion.—In the dissipative case, the

front is unchanged, but the core becomes more complex,
and cannot be described by fields with a simple scaling
form. Indeed, the dissipation term in Eq. (1c) depends
explicitly on an additional time scale, the collision time
ω−1, and is consequently incompatible with the scaling
[Eq. (3)]. In the front, the spread in velocity is of order
_R, since particles advancing at that speed collide with
others at rest. Incoherent motion is continuously generated
by these collisions, so that at the boundary Θ ∼ _R2ðtÞ, as in
the elastic case. Inserting this ansatz in Eq. (1c), the
dissipation term grows in magnitude compared to transport
terms by a factor ωRðtÞ= _RðtÞ ∼ RðtÞ: asymptotically, tem-
perature is dissipated too fast to be advected on distances
comparable to RðtÞ. Dissipation instead acts over a distance
_R=ω that is here time independent; this creates a travelling
wavelike zone behind the front, the “cooling region.” Then,
moving further toward the interior of the blast, we find a
distinct cold layer where temperature is negligible and
particle velocities are aligned; dissipation is eliminated, and
fields once again assume a self-similar form. This region
reaches a density close to random close packing, echoing
the clustering tendency of granular media [10]. Finally, as
all the inner material accretes into this dense layer, an
empty cavity opens at the center and the blast wave forms a
hollow shell, in line with Oort’s argument [21]. The
validation of this multilayered structure in MD simulations
(see Fig. 1 and 2) is a crucial result that drives all further
analysis. We expect it to hold beyond our model system: the
decoupling of length or energy scales that shapes the layers
only requires ω to increase with n and Θ.
By contrast with past attempts at elucidating the blast’s

structure [34], we argue that a consistent description
requires a dense fluid equation of state, to account for
compression in the shell. We find a solution to Eqs. (1) with
an anisotropic pressure tensor acting only along the radial
direction er,

p ¼ nΘZðnÞer ⊗ er; ð4Þ

where ZðnÞ is a diverging function of density, accounting
for steric effects [25,27,29]. Such strongly anisotropic
pressure is frequently observed in granular systems [35],
and the divergence in ZðnÞ allows the cold region, despite
its vanishing temperature, to exhibit a finite pressure field.
This is essential for the existence of self-similar profiles in
analogy with Eqs. (3). Boundary conditions on these
profiles are set by a fixed-width layer, comprised of the

shock front where temperature is created, and the cooling
region where it is dissipated. We describe this layer in a
flux-difference form [27], which generalizes Rankine-
Hugoniot conditions [32] to the dissipative case and over
a finite distance [29]: in this thin layer the system is
assumed to be quasi-1D, allowing us to simplify Eqs. (1)
and integrate them between RðtÞ and r ¼ RðtÞ − x giving

nðxÞ ¼ nrestMðxÞ; u ¼ _R

�
1 −

1

M

�
; p ¼ nrest _Ru

ð5Þ

where all three fields are parameterized by the compression
MðxÞ obeying the following equation [which may be
integrated numerically for any choice of ZðnÞ]:

ðM − 1Þ
�
d
2
Z−1 þ 1

�

¼ M2

2
− ω0ð1 − α2Þ

Z
x

0−
dx0

�
dðM − 1Þ

2Z

�
3=2

: ð6Þ

Higher-order transport terms neglected in Eqs. (1) may in
fact intervene in this layer, which has no growing typical
length scale; however, this simplified analysis proves
accurate enough.
In the cold region, we can assume scaling forms similar

to Eqs. (3), although temperature is vanishingly small. An
analytical solution is possible, as the fluid density is fairly
approximated by its random close packing value nrcp ¼
nrestMrcp corresponding to a volume fraction ϕrcp ≈ 0.84 for
d ¼ 2 or 0.64 for d ¼ 3; hence,

FIG. 2 (color online). Hydrodynamic profiles from MD sim-
ulations for dense conservative (crosses) and dissipative (circles)
fluids with ϕrest ¼ 0.3, and analytical solutions (solid lines).
Profiles are rescaled by the Rankine-Hugoniot boundary value
(see Ref. [29]), from left to right: nðλÞ=nRH, uðλÞ=uRH, and
ΘðλÞ=ΘRH with λ ¼ r=RðtÞ. The conservative solution is parti-
tioned into the gas at rest, the shock front (shaded area), and the
self-similar bulk. This is the first validation of a TvNS-like
solution in a dense fluid. For any dissipation, i.e., α < 1 (here
α ¼ 0.8), the bulk structure becomes threefold, as shown by
dashed vertical lines: the cooling region between the front and
Rc ≈ 0.93R; the maximally dense cold fluid down to Ri ≈ 0.78R;
and the central cavity.
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VðλÞ ¼ δð1 −M−1
rcpÞλ−d;

PðλÞ ¼ δ2λ2ð1 −M−1
rcpÞ½Mrcpðλd − 1Þ þ 1�: ð7Þ

The profiles thus obtained are seen in Fig. 2 to fare
remarkably against MD simulations, despite the piecewise
nature of the model. No fitted parameter is necessary. This
is a crisp validation of the hydrodynamic view developed
here as, to the best of our knowledge, no other model for
blasts (dissipative or conservative) has been successfully
applied to a dense fluid or supported by microscopic
simulations. As anticipated, the flow velocity is maximal
on the inner boundary of the cold region: the shell is pushed
outward by its innermost particles, while the outermost
slow down with dissipation and accrete onto the incoming
“snowplow.” At odds with the conservative case, coherent
flow thus decouples from thermal agitation; we now see
that this is the cornerstone of the similarity solution.
From the tensorial form of pressure, Eq. (4), it can be

shown by integrating Eq. (1b) that radial momentum
Π ¼ R

nurd−1dr within a given solid angle (d ¼ 3) or
angular sector (d ¼ 2), is conserved. This formally dem-
onstrates the invariant suggested by previous authors
[13,21] which yields the growth exponent δ¼ 1=ðdþ1Þ,
as sketched above. The reason for the conservation of Π is
twofold: first, the central pressure at r ¼ 0 vanishes in the
cavity, and second, there are no orthoradial exchanges of
momentum, due to the decoupling of coherent (radial) and
incoherent (partly orthoradial) motion. In the elastic case
ðα ¼ 1Þ, however, the opposite statements hold, and the
expansion is dominated by the central pressure, which
causes Π to increase with time, leading to δ > 1=ðdþ 1Þ.
On shorter time scales, the evolving interplay of these
forces gives rise to a succession of intermediate regimes,

such as the pressure-driven snowplow [8], which we
confirm in MD simulations [29].
Finally, we evidence an instability arising at late times,

which disrupts the MCS solution analyzed above and
manifests as a growing corrugation of the shell (see
Fig. 3). Numerics show that this growth follows a power
law, suggesting that it stems from the self-similar cold
region. While other instabilities can be found in TvNS
shock waves under specific conditions [36], we stress the
generic character of the instability discussed here.
Necessary conditions are the conservation of radial
momentum and a vanishing pressure on the inner boundary
of the shell, which explain the absence of this phenomenon
in conservative gases, and distinguish it from other insta-
bilities of granular systems [37]. We perform a linear
stability analysis, focusing here on the bidimensional case
which lends itself to experimental confirmation. For each
field ψ (among density, velocity and pressure) in the cold
region, we look for a solution of the form

ψðr; tÞ ¼ ψ0ðλÞ½1þ δψðλÞ cosðkθÞts�; ð8Þ

with ψ0ðλÞ the unperturbed self-similar profile, δψðλÞ the
relative perturbation, and sðkÞ the exponent of relative
growth for a given angular frequency k. This analysis is
complicated by the fact that the underlying solution is
neither uniform nor stationary. We have to resort to a
method previously used in conservative blasts [17]: the
exponent s is used as a free parameter, selected for each
value of k to minimize the difference between numerically
integrated profiles and theoretical values on the boundaries
[29]. We thereby sample the dispersion relation sðkÞ: as
seen in Fig. 3, we predict the fastest growing perturbation
with s ≈ 0.3. The value of the exponent and its independ-
ence on parameters α and ϕrest are both confirmed by
simulations.
Conclusion.—Most extensions to the Taylor-von

Neumann-Sedov blast exhibit either a breakdown of
similarity, or self-similarity of the second kind, i.e.,
continuous dependence on dynamical parameters [5].
The dissipative blast studied here is exceptional in that
its asymptotic expansion remains self-similar of the first
kind, driven by inertial motion rather than fine-tuned by the
dissipative processes themselves. This property is generic
to a large class of fluids: regardless of its mechanism, bulk
energy dissipation only comes into play to enforce the
layered structure of the shock. Under weak conditions, the
energy scales for coherent and incoherent motion decouple
and each comes to dominate a different region: temperature
resides in a thin layer, pushed by a self-similarly growing
cold region. We have given a full hydrodynamic description
of this structure, in excellent agreement with particle-level
simulations, and thus brought to the fore the mechanisms
underlying the similarity solution. Its cornerstone, the
conservation of radial momentum per angular sector, stems

FIG. 3 (color online). Left: Shock radius by angular sector
Rðθ; tÞ at successive times (see Ref. [29] for its definition). The
line thickness represents the mean free path in the shock front, or
about half its average width w ≈ 0.01. Right: Corrugation width
δR ∼ tδþs with theoretical exponent s≃ 0.3 (solid line) and
numerical validation for α ¼ 0.3 (circles) and α ¼ 0.8 (crosses).
Inset: Real part of the dispersion relation sðkÞ for the unstable
mode, crossing the marginal stability lineℜðsÞ ¼ 0 (dashed line),
with a plateau at ℜðsÞ ≈ 0.3.
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from this decoupling of energy scales, reflected by the
anisotropic pressure within the shell. Using the hydro-
dynamic profiles, we could perform a stability analysis, and
successfully predict the existence and exponent of a
corrugation instability rooted in the cold region. These
results invite further contact between kinetic and con-
tinuum approaches, and between fields, from plasmas to
granular systems, to deepen our understanding of dissipa-
tive fluids.
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