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We report the first lattice QCD calculation of the complex kaon decay amplitude A0 with physical
kinematics, using a 323 × 64 lattice volume and a single lattice spacing a, with 1=a ¼ 1.3784ð68Þ GeV.
We find ReðA0Þ ¼ 4.66ð1.00Þð1.26Þ × 10−7 GeV and ImðA0Þ ¼ −1.90ð1.23Þð1.08Þ × 10−11 GeV, where
the first error is statistical and the second systematic. The first value is in approximate agreement with the
experimental result: ReðA0Þ ¼ 3.3201ð18Þ × 10−7 GeV, while the second can be used to compute the
direct CP-violating ratio Reðε0=εÞ ¼ 1.38ð5.15Þð4.59Þ × 10−4, which is 2.1σ below the experimental value
16.6ð2.3Þ × 10−4. The real part of A0 is CP conserving and serves as a test of our method while the result
for Reðε0=εÞ provides a new test of the standard model theory of CP violation, one which can be made more
accurate with increasing computer capability.
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The violation of CP symmetry was discovered as a
subpercent admixture of the CP-even combination of K0

and K0 mesons in a nominally CP-odd decay eigenstate
[1]. In the standard model this mixing is caused by a single
CP-violating phase which can be introduced if there are
three generations of quarks in nature [2]. This CP-violating
mixing is the indirect effect of virtual top quarks. It is
described by the parameter ε whose measured magnitude
is 2.228ð0.011Þ × 10−3, a value successfully related by the
standard model to the CP-violating phase measured in the
decay of bottom mesons.
Much more difficult to measure and to compute theo-

retically is the direct violation of CP in K decay, described
by the parameter ε0 and resulting from a CP-violating
difference between the phases of the decay amplitudes A0

andA2, which describe kaon decay into a two-pion statewith
isospin I ¼ 0 and 2, respectively. This directCP violation is
3 orders of magnitude smaller than that caused by mixing,
with Reðε0=εÞ ¼ 1.66ð0.23Þ × 10−3 [3–7]. Because of its
small size this direct violation of CP is especially sensitive
to phenomena beyond the standard model, phenomena that
are believed to be required to explain the current excess of
matter over antimatter in the Universe.
While standard model, direct CP violation involves

massive W bosons and top quarks at an energy scale far
above that accessible to lattice QCD, these high-energy

interactions can be accurately captured by a low-energy
effective Lagrangian with Wilson coefficients (yi and zi
below) which have been computed to next-to-leading order
in QCD and electroweak perturbation theory [8]:

HW ¼ GFffiffiffi
2

p V�
usVud

X10
i¼1

½ziðμÞ þ τyiðμÞ�QiðμÞ: ð1Þ

Here GF ¼ 1.166 × 10−5=ðGeVÞ2, Vq0q is the Cabibbo-
Kobayashi-Maskawa matrix element connecting the quarks
q0 and q and τ ¼ −V�

tsVtd=V�
usVud. The ten operators Qi

are combinations of seven independent four-quark oper-
ators [9], renormalized at the scale μ. The task that remains
is to compute the matrix element of the ten Qi between an
initial kaon and final ππ state with I ¼ 0 or 2. While this
has been an active area for theoretical work over the past
thirty years, no reliable analytic method to compute these
matrix elements has emerged [10–13]. However, this task is
well suited to lattice QCD.
Over the past five years, the calculation of the I ¼ 2

decay has become accessible to lattice methods [14,15] and
physical, continuum-limit results for A2 are available with
10% errors [16]. However, calculating the I ¼ 0 amplitude
A0 faces substantial new difficulties: (i) the need to create
an I ¼ 0 two-pion state with energy well above threshold
and (ii) the statistical noise associated with the vacuum
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intermediate state. These difficulties have been overcome
by methods we will now describe.
Computational method.—The K → ππ matrix elements

of the ten operators Qi are determined from the Euclidean
Green’s functions

Ci
K;ππðtK; tQ; tππÞ ¼ h0jJππðtππÞQiðtQÞJKðtKÞj0i ð2Þ

in the limit of large time separations tππ − tQ and tQ − tK ,
which projects onto the initial and final states of interest.
The operators JK and Jππ create the initial-state kaon and
destroy the two final-state pions. Introducing a final state
composed of two pions with nonzero relative momentum
poses special challenges. Using now standard methods
[17], the desired finite-volume two-pion state would have
an energy well above that with two pions at rest and require
a multiexponential fit to determine the decay matrix
element. For the I ¼ 2, two-pion state this problem can
be addressed by imposing antiperiodic boundary conditions
on the down quark [14,18].
However, for the I ¼ 0 state we must impose isospin-

symmetric boundary conditions to avoid mixing the I ¼ 0
and 2 states. This is possible through a major algorithmic
advance: the introduction of G-parity boundary conditions
[19,20]. Since each pion is odd under G parity, apart
from the effects of their interaction, each pion must then
carry a minimum momentum of π=L for each direction
(of length L) in which G parity is imposed. For our lattice
volume, imposingG-parity boundary conditions in all three
spatial directions results in the required I ¼ 0, ππ energy
Eππ ≈MK .
The G-parity transformation is described by the operator

G ¼ CeiπIy , a product of charge conjugation (C) and a 180°
isospin rotation about the y axis [21]. When a lattice
derivative connects quark fields across such a boundary the
ðu; dÞ doublet is joined to a G-parity transformed doublet
ðd̄;−ūÞ. This doubles the computational cost and requires
substantial code modifications since explicit u and d
degrees of freedom must be introduced. In addition, the
gauge fields must now obey charge-conjugation boundary
conditions which demands new, special, gauge ensembles.
Since quarks and antiquarks are mixed at the boundaries,
new contractions must be included in which two quark or
two antiquark fields are joined by a propagator. Finally, a
consistent treatment of the strange quark s requires that we
include an unphysical partner s0 to form an isodoublet that
obeys G-parity boundary conditions [22]. When generating
the 2þ 1 flavor gauge ensemble we must then take the
square root of the determinant of the s − s0 Dirac operator
so that only a single strange quark flavor is included.
The second critical difficulty is that the I ¼ 0, two-

pion state has the same quantum numbers as the vacuum,
the state which thus dominates the large tππ − tQ limit
needed to remove excited states. We must subtract this
vacuum contribution and deal with the exponentially falling

signal-to-noise ratio that results, a subtraction carried out
successfully in threshold calculations, with final-state pions
approximately at rest [23–25].
We reduce the noise from this vacuum subtraction using

two techniques. First, we use a split-pion operator [24] to
destroy the two-pion state. Specifically, JππðtππÞ is the
product of two quark-antiquark pairs, one pair at the time
tππ and the second at tππ þ 4. By separating the pion
operators we suppress the vacuum coupling that results when
coincident pion operators immediately create and destroy a
pion, reducing thevacuumnoise2×.Second,we use all-to-all
propagators [27,28] to construct each pion interpolating
operator from a quark-antiquark pair, fixed to Coulomb
gauge, with a relative coordinate, hydrogen ground-state
wave function of radius 2a and center-of-mass coordinate
distributed over a time plane at tππ or tππ þ 4. This choice
increases the Jππ coupling to the two-pion state relative to the
vacuum, giving a further 2× noise reduction [29].
We use a 323 × 64 volume, the Iwasakiþ DSDR

gauge action [30] and Möbius [31], domain wall fermions
(DWF) [32] with an extent of 12 in the fifth dimension.
By using β ¼ 1.75 and Möbius parameters bþ c ¼ 32=12
and b − c ¼ 1 we ensure that this ensemble is equivalent
to our earlier dislocation-suppressing determinant ratio
(DSDR) ensemble [33], except that the latter has periodic
boundary conditions and mπ ¼ 170 MeV. Input quark
masses of mlð¼ mu ¼ mdÞ ¼ 0.0001 and ms ¼ 0.045 are
used. (If a dimensioned quantity is given without units,
lattice units are implied.) The inverse lattice spacing,
residual quark mass, pion mass, and single-pion energy
are 1=a ¼ 1.3784ð68Þ GeV, mres ¼ 0.001842ð7Þ, Mπ ¼
143.1ð2.0Þ MeV, and Eπ ¼ 274.6ð1.4Þ MeV.
We analyzed 216 gauge configurations separated by

four units of molecular dynamics time, starting at 300 time
units for equilibration. Seventy-five distinct diagrams were
computed, of four types as shown in Fig. 1. We compen-
sated for this small number of configurations by performing
64 measurements on each configuration, introducing the
kaon and pion sources on each of the 64 time planes. (The
statistically more accurate, type 1 and 2 diagrams were
computed only on every eighth time plane.) The many
propagator inversions needed on each configuration were
accelerated using low-mode deflation with 900 Lanczos
eigenvectors [34] with the BAGEL fermion matrix package

FIG. 1. Examples of the four types of diagram contributing to
the ΔI ¼ 1=2, K → ππ decay. Lines labeled l or s represent light
or strange quarks. Unlabeled lines are light quarks.
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[35]. A complete set of measurements required 20 hours
on an IBM Blue Gene/Q 1

2
-rack [36], in balance with the

24 hours needed to generate four time units of gauge field
evolution on this same machine.
We must deal with two sorts of finite-volume effects. The

first are errors falling exponentially with increasing lattice
size which result from “squeezing” the physical states.
Such errors are at the percent level if Lmπ ≥ 4. In our case,
Lmπ ¼ 3.2 and errors ≈7%may result [15]. The second are
effects falling as a power of L, similar to the discretization
of the energy that we are exploiting. Here, we apply the
Lellouch-Lüscher correction [17] to remove the leading
1=L3 effect. This requires that our final ππ state is an
“s-wave” combination of the eight single-pion momenta
ð�1;�1;�1Þπ=L. Ensuring this s-wave symmetry requires
pion operators constructed to minimize the quark-level,

cubic-symmetry violations introduced by G-parity boun-
dary conditions.
Essential to this calculation is the ability to define the

seven independent, four-quark, lattice operators which
correspond to those in the continuum Eq. (1). This is
accomplished by using DWF whose accurate chiral
symmetry ensures that the operator mixing is the same
as that in the continuum. Specifically, we apply the Rome-
Southampton method [37] at μ ¼ 1.53 GeV, to introduce
RI/SMOM normalization [23] and then use continuum
QCD perturbation theory [38] to relate this to the Minimal
Subtraction (MS) normalization used for the Wilson
coefficients [8].
Analysis and results.—The K → ππ matrix elements of

the operators Qi can be determined from the time depend-
ence of the three-point functions defined in Eq. (2):

hJππðtππÞQiðtQÞJKðtKÞi ¼ e−Eππðtππ−tQÞe−MKðtQ−tKÞh0jJππð0ÞjππihππjQið0ÞjKihKjJKð0Þj0i þ � � � : ð3Þ

The ellipses represent contributions from the vacuum final
state or excited kaon or ππ states. For the “split-pion”
operator JππðtππÞ, tππ is the time closest to tQ.
The normalization factors h0jJππð0Þjππi and

hKjJKð0Þj0i in Eq. (3), and the energies MK and Eππ

can be determined from the two-point functions

h0jJ†XðtaÞJXðtbÞj0i ¼ e−EXðta−tbÞjh0jJXð0ÞjXij2; ð4Þ
where X ¼ ππ or K. For X ¼ ππ the contribution of the
vacuum intermediate state to the left-hand side must be
subtracted. Figure 2 shows the resulting effective energy
of the kaon and two-pion states in lattice units. The kaon
mass is obtained from an uncorrelated fit using 6 ≤ t ≤ 32.
For the more challenging I ¼ 0, ππ energy, we perform a

correlated, single-state fit over the interval 6 ≤ t ≤ 25,
obtaining χ2=dof ¼ 1.56ð68Þ. A correlated, two-state
fit using 3 ≤ t ≤ 25 gives consistent results. We find
MK¼490.6ð2.4ÞMeV and Eππ ¼ 498ð11Þ MeV. Using the
Lüscher quantization condition [39,40] we find an I ¼ 0,
ππ phase shift δ0 ¼ 23.8ð4.9Þð1.2Þ°, smaller than phenom-
enological expectations [41,42]. Here, the first error is
statistical and the second an estimate of the Oða2Þ error.
For I ¼ 2 we find EI¼2

ππ ¼ 573.0ð2.9Þ MeV and will
use δ2 ¼ −11.6ð2.5Þð1.2Þ°, a corrected version of our
continuum result [16].
Important for type 3 and 4 diagrams is the quadratically

divergent quark loop. This contribution is the same as that
from the operator d̄γ5s with a coefficient ∝ ðms −mlÞ=a2.
Since d̄γ5s is the divergence of an axial current, its matrix
element between states with equal four momentum will
vanish and it will not contribute to a physical process such
as K → ππ. However, for matrix elements between states
with unequal energies, this term may be 20× larger than
the other physical terms. Even for an energy conserving
amplitude, it will contribute both noise and increased
systematic error from enhanced, energy nonconserving,
excited-state contamination. We determine the size of
such an unphysical piece from the ratio ri ¼ h0jQiðtQÞjKi=
h0jd̄γ5sðtQÞjKi and then subtract, time slice by time slice,
the operator rid̄γ5sðtQÞ [43], dramatically reducing the
noise for Q5, Q6, Q7, and Q8.
The largest contributions to the real and imaginary parts

of A0 come from Q2 and Q6, respectively. Figure 3 shows
the three-point functions for these operators as a function
of the time separation between Qi and Jππ . Because the
vacuum state may appear between these operators, the
relative size of the statistical noise in the vacuum-subtracted
matrix element increases rapidly as tππ − tQ increases.

FIG. 2 (color online). Effective energies of the kaon (squares)
and two-pion (circles) states deduced from the corresponding
two-point functions by equating the results from two time
separations to the function A coshEeffðT=2 − tÞ, where T ¼ 64
is the temporal lattice size, plotted as a function of the smallest of
those two separations. (We replace T by T − 8 for the ππ case.)
These are overlaid by the error bands corresponding to the fitted
values of Eππ (light blue) and mK (pink).

PRL 115, 212001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 NOVEMBER 2015

212001-3



In Fig. 3 we have combined the data (by taking an error-
weighted average) from each three-point function for fixed
tππ − tQ and tQ − tK ≥ 6.
The matrix elements fhππjQijKig1≤i≤10 are obtained by

fitting the corresponding three-point functions to the time
dependence in Eq. (3), using tQ − tK ≥ 6 and tππ − tQ ≥ 4.
We fit 25 time separationswith tππ − tK ¼ 10, 12, 14, 16, and
18. Figure 3 is consistent with the existence of plateaus for
tππ − tQ ≥ 4 and consistent results are obtainedwhen includ-
ing the tππ − tQ ¼ 3 data, suggesting substatistical, excited-
state contamination. We estimate the systematic error from
excited-state contamination as the 5%difference between the
ππ amplitude from a correlated, single-state fit to the ππ
correlator with t ≥ 4 (our matrix element fitting method) and
the lowest energy amplitude found in a correlated, two-state
fit to the same data with t ≥ 3, although the difference is
again within the now smaller statistical errors. (If we omit
the accurate, tππ − tQ ¼ 4 data, our statistical errors increase
by 40%.) Combining the data into bins of size 1, 2, 4, and
8 configurations, shows no bin-size dependence of the
statistical errors, suggesting that autocorrelations can be
neglected. We therefore use a bin size of one.
Finally, these lattice matrix elements are combined

with the renormalization factors, Wilson coefficients, and
Lellouch-Lüscher finite-volume correction to obtain their
contributions to A0 as listed in Table I. Adding these
individual contributions together gives our final result:

ReðA0Þ ¼ 4.66ð1.00Þð1.26Þ × 10−7 GeV; ð5Þ

ImðA0Þ ¼ −1.90ð1.23Þð1.08Þ × 10−11 GeV; ð6Þ

where the first error is statistical and the second (discussed
below) is systematic. We can then compute the exper-
imental measure of direct CP violation:

Re

�
ε0

ε

�
¼ Re

�
iωeiðδ2−δ0Þffiffiffi

2
p

ε

�
ImA2

ReA2

−
ImA0

ReA0

��
ð7Þ

¼ 1.38ð5.15Þð4.59Þ × 10−4; ð8Þ

obtained using the ImðA0Þ and δ0 values given above and
our earlier results for ImðA2Þ and δ2 [16]. We use the
experimental values for ReðA0Þ, ReðA2Þ, and their ratio ω
(since these are accurately determined from the measured
K → ππ decay rates) and the experimental value for ε.
We now briefly describe the systematic error estimates

given in Table II; more complete explanations will appear
in a later paper. We estimate the finite lattice spacing error
by averaging the differences between the three, individual
ΔI ¼ 3=2, K → ππ matrix elements obtained using the
present gauge action [15] and our recent continuum-limit
results [16]. The errors arising from the Wilson coefficients
are estimated as the difference of our result computed using
the leading-order (LO) and next-to-leading-order (NLO)
formulas for ReðA0Þ [8]. A similar uncertainty arises when

TABLE I. Contributions to A0 from the ten continuum, MS
operators QiðμÞ, for μ ¼ 1.53 GeV. Two statistical errors are
shown: one from the lattice matrix element (left) and one from the
lattice to MS conversion (right). See the Supplemental Material
at [44] for tables of the separate matrix elements in the lattice,
RI/SMOM and MS schemes, as well as the renormalization
matrices which relate them.

i ReðA0ÞðGeVÞ ImðA0ÞðGeVÞ
1 1.02ð0.20Þð0.07Þ × 10−7 0
2 3.63ð0.91Þð0.28Þ × 10−7 0
3 −1.19ð1.58Þð1.12Þ × 10−10 1.54ð2.04Þð1.45Þ × 10−12

4 −1.86ð0.63Þð0.33Þ × 10−9 1.82ð0.62Þð0.32Þ × 10−11

5 −8.72ð2.17Þð1.80Þ × 10−10 1.57ð0.39Þð0.32Þ × 10−12

6 3.33ð0.85Þð0.22Þ × 10−9 −3.57ð0.91Þð0.24Þ × 10−11

7 2.40ð0.41Þð0.00Þ × 10−11 8.55ð1.45Þð0.00Þ × 10−14

8 −1.33ð0.04Þð0.00Þ × 10−10 −1.71ð0.05Þð0.00Þ × 10−12

9 −7.12ð1.90Þð0.46Þ × 10−12 −2.43ð0.65Þð0.16Þ × 10−12

10 7.57ð2.72Þð0.71Þ × 10−12 −4.74ð1.70Þð0.44Þ × 10−13

Total 4.66ð0.96Þð0.27Þ × 10−7 −1.90ð1.19Þð0.32Þ × 10−11

TABLE II. Representative, fractional systematic errors for the
individual operator contributions to ReðA0Þ and ImðA0Þ.

Description Error Description Error

Finite lattice spacing 12% Finite volume 7%
Wilson coefficients 12% Excited states ≤ 5%
Parametric errors 5% Operator renormalization 15%
Unphysical kinematics ≤ 3% Lellouch-Lüscher factor 11%
Total (added in quadrature) 27%

FIG. 3 (color online). The Q2 and Q6 three-point functions,
plotted in lattice units as functions of tππ − tQ, with the time
dependence in Eq. (3) removed. The horizontal lines show the
central value and errors from the fit described below.
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we relate our lattice operators to the MS operators in the
continuum expression for HW. This procedure is compro-
mised by our use of NLO perturbation theory at μ ¼
1.53 GeV to relate the RI- and MS-normalized operators
and by our omission of dimension 5 and 6 quark-bilinear
operators (whose contribution we expect to be small) from
the nonperturbative operator matching. These operator
normalization errors are estimated, as in Ref. [16], by
comparing two different RI/SMOM schemes. Parametric
uncertainties are found by propagating the standard model
input parameter errors. Comparing two Ansätze for the
Eππ dependence of δ0 suggests a 11% uncertainty in the
Lellouch-Lüscher finite-volume correction. Finally, sys-
tematic errors are introduced by our mildly unphysical
kinematics which are estimated from a companion calcu-
lation using a 10% larger value of the strange quark mass.
Conclusion.—We have presented the first calculation of

the direct CP violation parameter ε0 with controlled errors.
While the 2.1σ difference between our value for Reðε0=εÞ
and experiment gives a strong motivation to refine the
present calculation, we believe that the absolute size of our
statistical and systematic errors demonstrates that this is
now a quantity accessible to lattice QCD. Also, for the first
time, we have computed the real part of the decay
amplitude A0. The result agrees with the experimental
value and provides a test of our methods. This result for
ReðA0Þ is consistent with our earlier explanation of the
ΔI ¼ 1=2 rule [45] in which the large ratio of
ReðA0Þ=ReðA2Þ resulted from a significant cancellation
between the two dominant terms contributing to ReðA2Þ, a
cancellation which does not occur for ReðA0Þ. We empha-
size that this calculation can be substantially improved
by adding more statistics and by studying larger volumes
and additional lattice spacings to better control the large
systematic errors. Nonperturbative, step-scaling methods
can relate the lattice operators being used to those defined
at much smaller lattice spacing where the perturbative
Wilson coefficients can be more accurately determined.
We expect that a 10% error relative to the measured value
of Reðε0=εÞ can be achieved within five years, motivating
continued improvement in the experimental result.
Substantially more accurate results will become possible
with further increases in computer power and the inclusion
of electromagnetism.
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