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In the AdS=CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled
state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift
generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the
black hole interior in these states and constrain their properties using effective field theory. By adapting
recent versions of the information paradox we show that these observables are necessarily described by
state-dependent bulk-boundary maps, which we construct explicitly.
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Introduction.—There has been significant recent debate
on whether the AdS=CFT correspondence [1] can mean-
ingfully describe the interior of a black hole. The authors of
[2,3] [Almheiri, Marolf, Polchinski, Stanford, and Sully
(AMPSS)] argued, following Mathur [4], that the CFT did
not contain operators with the right properties to play the
role of local perturbative excitations in the interior of a
black hole. However, in [5,6], we showed how to construct
such operators to leading order in the 1=N expansion. Our
construction circumvented the AMPSS arguments by
allowing the map between bulk and boundary operators
to be state dependent. In this Letter, we show that versions
of the AMPSS paradoxes also appear in the eternal
black hole and must, once again, be resolved using
state-dependent bulk-boundary maps.
We will assume that the eternal black hole has a smooth

interior and is dual to a particular entangled state of two
decoupled conformal field theories [7],

jΨi ¼ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

E

e−ðβE=2ÞjE;Ei;

where the sum is over all energy eigenstates, β is the inverse
temperature of the black hole, and the partition function
is ZðβÞ ¼ Trðe−βHRÞ.
We will first argue that if one accepts this duality, then it

follows that a much broader class of states is dual to the
same “geometry,” but glued differently to the boundary.
These states are obtained by evolving jΨi with either of the
two boundary Hamiltonians for a time T,

jΨTi ¼ eiHLT jΨi ¼ eiHRT jΨi: ð1Þ
Using a variant of the arguments of [2,3], we show that it is
impossible to find a global linear map between bulk and
boundary fields that reproduces the predictions of effective
field theory behind the horizon for all states in the class (1).
We show this, by expanding on the work of AMPSS, in

order to reveal a paradox that can be phrased in terms of a
precise question regarding the existence of operators in the
CFT with certain properties. In this, our method differs
from work [8,9] that also discussed some subtleties of the
map between the thermofield doubled state and the eternal
black hole.
Our method also allows us to clarify the assumptions that

are required to prove the nonexistence of a global bulk-
boundary map. In particular, our result depends on inter-
mediate inferences (which we justify but do not prove) that
the gravity dual of an unentangled pair of eigenstates does
not have any wormhole and that the thermofield state
remains smooth even after an exponentially long time.
Our conclusion is also different from Refs. [8,9], which

argued that the thermofield-eternal black-hole duality is
either incomplete or incorrect. Instead, we show that if we
consider a given state from (1) and small fluctuations about
this state, then, as we show in the following, we can
explicitly write down boundary operators that are dual to
local bulk operators.
In recent work, Marolf and Polchinski [10] have argued

that if generic pure states in a single CFT are to have
smooth horizons in a state-dependent description, then
states with near-unit product in the Hilbert space must be
physically distinct. While we will address this in forth-
coming work, we note that the discussion of the eternal
black hole in this Letter is logically independent of the
validity of these arguments. Moreover, the state-dependent
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interior operators that we write down explicitly for the class
of states (1) do not suffer from the Born-rule violations that
are discussed in [10].
Therefore, an important result of this Letter is that

state-dependent bulk-boundary maps—which were also
explored in [11,12], and which are discussed in greater
detail in [13]—are necessary to preserve quantum effective
field theory for the infalling observer and also are sufficient
to resolve extensions of the AMPSS paradoxes. This
suggests that state dependence is a broader feature of local
operators in quantum gravity.
Review of the eternal black hole.—The metric of the

eternal AdSdþ1-Schwarzschild black hole is

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2
d−1;

where fðrÞ ¼ r2 þ 1 − cdGMr2−d, and cd ¼
8ðd − 1Þ−1π½ð2−dÞ=2�Γðd=2Þ.
We introduce the tortoise coordinate dr�=dr ¼ fðrÞ−1 so

that the right boundary is at r� ¼ 0 and the future horizon
is at r� → −∞, t → ∞. This metric can be smoothly
extended past the horizon by defining the Kruskal variables
U ¼ −eð2π=βÞðr�−tÞ and V ¼ eð2π=βÞðr�þtÞ. The future horizon
is then at U ¼ 0, with V finite. The past horizon is at
V ¼ 0, with U finite.
The quadrant connected to the right boundary is called

region I. We can also introduce Schwarzschild coordinates
in the other quadrants of the extended geometry. In region
II, inside the black hole, we write U ¼ eð2π=βÞðr�−tÞ,
V ¼ eð2π=βÞðr�þtÞ, and in region III, connected to the
left asymptotic region, we have U ¼ eð2π=βÞðr�−tÞ,
V ¼ −eð2π=βÞðr�þtÞ. The two boundaries are at UV ¼ −1.
It is important to note that the geometry is “glued” to

the left CFTwith a flip in the time coordinate in region III.
Therefore, while the time in CFTR is identified as
tR ¼ t, the time in CFTL is identified as tL ¼ −t.
Correspondingly, the isometry of the geometry, generated
by t → tþ T in all regions of spacetime, is dual to the
identity eiðHR−HLÞT jΨi ¼ jΨi.
Time-shifted thermofield states.—We now consider the

time-shifted thermofield states defined in (1). In any theory
of quantum gravity, evolution with a boundary Hamiltonian
simply corresponds to a large diffeomorphism in the bulk
that does not die off at the boundary [14].
The precise action of the CFT Hamiltonian in the bulk is

a gauge-dependent quantity, because the Dirac brackets
between the boundary Hamiltonian and bulk operators
depend on the gauge-fixing conditions. However, on the
boundary, its action is gauge invariant: the action of eiHLT

corresponds to a large diffeomorphism that induces a flow
on the left boundary, tL → tL þ T; correspondingly, eiHRT

includes a flow on the right boundary, tR → tR þ T.
It is easy to find explicit examples of such diffeo-

morphisms: eiHLT can be implemented by

U → U½γθ̂ð−XÞ þ θ̂ðXÞ�;

V →
V
γ
½θ̂ð−XÞ þ γθ̂ðXÞ�; ð2Þ

where X ¼ V − U, γ ¼ e2πT=β, and θ̂ is a smooth version of
the theta function. We set θ̂ðxÞ ¼ θðxÞ for jxj > ϵ, and the
function makes a smooth transition between its values in
the range ½−ϵ; ϵ� where ϵ ≪ 1.
In general, such a diffeomorphism changes the state. In

defining the theory we do not mod out by diffeomorphisms
that act nontrivially on the boundary. However, we do mod
out by trivial diffeomorphisms: diffeomorphisms with the
same boundary action—even if they differ in the bulk—
must be identified. The reader may find it useful to recall
the Brown-Henneaux analysis [15], where the global AdS3
vacuum was excited by large diffeomorphisms correspond-
ing to the Virasoro algebra. Therefore, the diffeomorphism
in (2) is not unique; it is a representative of an equivalence
class of diffeomorphisms which all have the common
property that they “slide” the left boundary by T.
Since eiHLT is just a diffeomorphism, it evidently leaves

all quantities that are intrinsic to the bulk geometry
invariant. The specific statement that we will be interested
in below is that an infalling observer from the right
perceives a smooth horizon in all states jΨTi. This point
was also made in the recent paper [16], and was discussed
in [17].
Because we did not use the classical equations of motion

anywhere in reaching this conclusion, and our only input
was the interpretation of Hamiltonian evolution as a large
diffeomorphism, we conjecture that this statement is exact.
The states jΨTi are smooth even for T ¼ OðeSÞ, where S is
the entropy of the black hole. Note that these exponentially
long times are still parameterically smaller than the
Poincaré recurrence time [18], which does not play a role
in our discussion.
To support this strong claim, we provide two other

perspectives. Using the isometry (1) of the thermofield
state, the experience of the right infalling observer jumping
into the state jΨTi at tR ¼ 0 is the same as the experience of
the right observer jumping into the state jΨi at tR ¼ −T.
From the geometry, it is clear that the right observer’s
experience is independent of the time at which he jumps in.
If we accept this as an exact statement, then it follows that
jΨTi is smooth for all T.
Second, from the point of view of the CFT, we would

like to treat the state jΨTi on the same footing as jΨi
because there is no natural common origin of time in the
two CFTs; the new states correspond to using a shifted time
origin on the left. We explore this in more detail in [13].
It is also useful to recognize that the states jΨTi are

phase-shifted states in the CFT,

jΨTi ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X

E

eð−βE=2Þeiϕ½E�jE; Ei; ð3Þ
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where ϕ½E� ¼ ETmod2π. In fact, since the spectrum of the
CFT is chaotic at high energies [19], we can choose T to
approximate any desired phase to arbitrary accuracy for a
conformal primary. However, since the energy of con-
formal descendants is integrally quantized, we require that,
within an irreducible representation,

ϕ½E� − ϕ½Eþ 1� ¼ ϕ½Eþ 1� − ϕ½Eþ 2�mod2π:

Supersymmetric states also have integrally quantized ener-
gies, but they are exponentially unimportant in (3). The
advantage of this perspective is that the phases correspond-
ing to T ∼Oð1Þ are not qualitatively different from the
phases generated by exponentially long T. This makes it
natural that jΨTi represents a smooth geometry even for
long times.
Relational observables.—In the presence of gravity, we

cannot assume that the coordinates are fixed as one changes
the state. Instead we must work with gauge-invariant
relational observables. These are not strictly local, but
they behave like local operators for many purposes [20].
Intuitively, we want to start from a point on the boundary
and follow a null geodesic for a given affine parameter to
relationally specify a point in the bulk. To normalize the
affine parameter, we must be more careful.
First, starting with a given boundary point ðtR;ΩÞ, we

consider a null geodesic parameterized by ordinary asymp-
totic Schwarzschild time t, and with no initial velocity
along Sd−1: _Ω ¼ 0. We can then specify all points in front
of the horizon as intersection points of this geodesic with
another geodesic that hits the boundary at a later time
ðt0R;Ω0Þ with no final velocity _Ω0 ¼ 0. The value of Ω0 must
be chosen to ensure these geodesics intersect.
We can now use these points to normalize the affine

parameter [13] of a null geodesic, and follow it into the
horizon for some affine time. All points in regions I and II
can be reached in this manner.

Now, let us consider the field ϕ as measured at one of
these points, which we will denote by ϕrel;RðtR; λÞ sup-
pressing the dependence on the Sd−1 which is interesting
[13] but not relevant for our discussion. The qualifier “rel,
R” indicates that this is a relational observable defined with
respect to the right boundary.
We note that ϕrel;RðtR; λÞ is invariant under any diffeo-

morphism that leaves the right boundary invariant, includ-
ing diffeomorphisms that do not vanish at the left boundary.
We can see this in several ways. By means of a trivial
diffeomorphism—one that leaves both boundaries
invariant—we can transform any diffeomorphism that
induces a flow on the left boundary into one that vanishes
everywhere except for a small region localized infinitesi-
mally close to the left boundary. Thus, it leaves the
experience of the right observer unchanged. More formally,
consider a diffeomorphism taking bulk points x → gðxÞ.
We can equivalently represent this as an action on the fields
ϕðxÞ → ϕ½g−1ðxÞ� and as corresponding actions on
the metric and higher spin fields. On the other hand, the
solution to the geodesic equation for a given affine
parameter λ (determined as above) transforms under the
new connection coefficients as xðλÞ → g½xðλÞ�. The rela-
tional observable ϕrel;RðtR; λÞ is thus left invariant.
Furthermore, diffeomorphisms that induce a flow along

the right boundary just shift the value of tR. Together, this
implies that

eiHLTϕrel;RðtR; λÞe−iHLT ¼ ϕrel;RðtR; λÞ;
eiHRTϕrel;RðtR; λÞe−iHRT ¼ ϕrel;RðtR þ T; λÞ: ð4Þ

Now, by solving the geodesic equation in the metric
given by the eternal black hole, we can trade the parameters
tR; λ for the usual Kruskal coordinates, UðtR; λÞ, VðtR; λÞ.
Near the horizon, U ¼ 0, the field can be expanded in
creation and annihilation operators

lim
U→0−

ϕrel;RðU;VÞ ¼
X
ωn

ω−1=2
n ½arelRωn

ðeiδnUiβωn=2π þ e−iδnV−iβωn=2πÞ þ H:c:�;

lim
U→0þ

ϕrel;RðU;VÞ ¼
X
ωn

ω−1=2
n ½ ~arelRωn

e−iδnU−iβωn=2π þ arelRωn
e−iδnV−iβωn=2π þ H:c:�; ð5Þ

where δn depends on details of scattering in the black-hole geometry [5]. The relations (4) now translate into

½HR; arelRωn
� ¼ −ωnarelRωn

; ½HL; arelRωn
� ¼ 0;

½HR; ~arelRωn
� ¼ ωn ~arelRωn

; ½HL; ~arelRωn
� ¼ 0:

These surprising commutation relations show that the naive construction of local bulk operators in terms of boundary
operators is incorrect. In particular, we may still identify arelRωn

with the Fourier modes of an appropriate single trace operator

O in the right CFT [21], arelRωn
¼ C−1=2β ORωn

, with
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ORωn
¼ T−1=2

b

Z
Tb

−Tb

ORðtRÞeiωntRdtR;

Cβ ¼
1

ZðβÞTrðe
−βHR ½ORωn

;ORωn
†�Þ;

where Tb specifies a time band that we can use to define
slightly “smeared” Fourier modes [13].
However, we cannot use aLωn

¼ C−1=2β OLωn
in place of

~arelRωn
in (5). This has the wrong commutator with the

Hamiltonian and the wrong two-point function,

hΨT jaLωn
arelRω0

n
jΨTi ¼ ð1 − e−βωnÞ−1eiωnT−ðβω=2Þδωn;ω0

n
:

A short calculation shows that ~arelRωn
must have a similar

two-point function, but without the factor of eiωnT ; this is
essential to reproduce the two-point function of a field
propagating about a smooth horizon.
We now proceed to show that no state-independent

operator in the CFT can play the role of ~arelRωn
.

Paradoxes in the eternal black hole.—Consider
the number operator as measured by the right
infalling observer. With c≡ arelRωn

− e−βωn=2ð ~arelRωn
Þ† and

d≡ ~arelRωn
− e−βωn=2ðarelRωn

Þ†, we define

Na ¼ ð1 − e−βωnÞ−1ðc†cþ d†dÞ:
At a smooth horizon the infalling observer expects to
encounter no particles,

hΨT jNajΨTi ¼ OðS−1Þ;

except for small quantum fluctuations, proportional to a
power of the entropy S that are also independent of time.
If we take the long time average

1

2Tav

Z
Tav

−Tav

hΨT jNajΨTidT ¼
X
E

e−βE

ZðβÞ hE;EjNajE;Ei

þ
X
E≠E0

e−ðβ=2ÞðEþE0Þ

ZðβÞ
sin ½ðE0 − EÞTav�
ðE0 − EÞTav

hE;EjNajE0; E0i

with the averaging time, Tav, large enough, we see that this
is only possible if

X
E

e−βE

ZðβÞ hE; EjNajE;Ei ¼ OðS−1Þ:

However, since this is true for all β above the Hawking-
Page transition temperature, we can do a Legendre trans-
form, and we conclude

hE;EjNajE;Ei ¼ OðS−1Þ;

for typical energy eigenstates E relevant to the black hole.

Note that while we used the number operator, Na, in the
reasoning above, we could have used some other operator
to detect the smoothness of the horizon. The point is that if
a state-independent operator predicts that the thermofield
state and its time-shifted cousins all have regular interiors,
then this operator also predicts that eigenstate pairs of the
form jE;Ei are smooth.
The authors of [2,3] argued, however, that state-inde-

pendent operators cannot describe the black hole interior in
individual energy eigenstates jEi of a single CFT. How can
the interior of energy eigenstate pairs jE; Ei—which do not
even have any entanglement—then be described by such
operators?
To sharpen this question, we additionally assume that the

absence of entanglement implies that eigenstate pairs have
no wormhole [17,21]. Therefore, no experiment on the left
should affect the right infalling observer,

hE; EjU†
LNaULjE;Ei ¼ hE;EjNajE;Ei; ∀ UL:

By suitably selecting UL, we infer

hE0; EjNajE0; Ei ¼ OðS−1Þ; ð6Þ

where E0 is an independent fixed typical energy eigenstate
in the left CFT.
We now immediately run into the AMPSS paradoxes.

For example, if we denote the orthonormal eigenstates of
the number operator a†ωnaωn

by jNji, then we expect

hE0; NjjNajE0; Nji ¼ Oð1Þ:

This is inconsistent with (6) by a change of basis [3].
To see another paradox, consider a band of energies

ðE − Δ; Eþ ΔÞ that contains D eigenstates; let PE;Δ;R and
PE;Δ;L be the projector onto this subspace in the right and
left CFTs, respectively. With ~Nn ≡ ~a†ωn ~aωn

,

TrðPE;Δ;LPE;Δ;R ~NnÞ ¼ Tr½PE;Δ;LPEþωn;Δ;Rð ~Nn þ 1Þ�;

where we have used the cyclicity of the trace, and the
expected commutator of the mirror operator with its adjoint
and with the two Hamiltonians. The number of states in the
shifted band Eþ ωn � Δ is Deβωn . A little algebra leads to

hE0; Ej ~NnjE0; Ei ¼ −ð1 − e−βωnÞ−1:

This negative expectation for a manifestly positive operator
is absurd and suggests that there is no state-independent
operator ~aωn

with the expected commutation relations.
State-dependent construction of the interior.—To cor-

rectly construct the interior of the eternal black hole, we
must use state-dependent operators, and we drop the
requirement that the same operators describe the right
relational observables in all time-shifted states. These
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operators can be obtained as a solution to the linear
equations presented in [6]. We present this solution below.
Consider the space of states formed by exciting a given

time-shifted state by operators Aα that can be written as
polynomials comprising Oð1Þ products of single trace
operators. This space is defined more precisely in [6].
We write the projector onto this space as P̂T ,

P̂TAαjΨTi ¼ AαjΨTi; hvjAαjΨTi ¼ 0;

∀ α ⇒ P̂T jvi ¼ 0:

The time-shifted states are mutually almost orthogonal

jhΨT jΨij2 ¼ (1þ OðS−1Þ)e−T2C=β2 ; ð7Þ
where C ∝ S is the specific heat of the CFT, and the
expression is valid for T ≪ 1.
Thus, by means of an Oð1Þ cutoff, Tcut, we construct

~arelRωn
¼

ffiffiffiffiffiffiffiffi
C
πβ2

s Z
TþTcut

T−Tcut

aTi
Lωn

P̂Ti
dTi; ð8Þ

where

aTi
Lωn

¼ C−1=2β T−1=2
b

Z
Tb

−Tb

OLðTi þ tLÞeiωntLdtL

is a smeared Fourier mode of the left field evaluated about
Ti. When inserted in correlators about the state jΨTi, and in
neighboring states obtained by acting with “reasonable”
excitations (including eiHTi for Ti < Tcut), it is easy to
check that ~arelRωn

satisfies the properties that we need up to
OðS−1Þ corrections [13].
On the other hand, for large T, the inner product (7) does

not decrease indefinitely but saturates at Oðe−S=2Þ. If we
attempt to take the cutoff Tcut to be exponentially large,
then the “fat tail” from the inner product above implies that
interference from distant microstates spoils the good
properties of the operator. In particular, therefore, we
cannot use the same operator to describe the interior of
the black hole in the entire range of states given by (1).
Conclusions.—The different time-shifted states are dis-

tinct states in the Hilbert space but correspond to the same
macroscopic geometry for the right observer; in this sense,
they are like “microstates” of the eternal black hole. In this
Letter, we have shown that it is impossible to construct
state-independent operators that describe a smooth interior
in all these microstates. As in our previous paper, given a
particular time-shifted state, we can find state-dependent
operators with the right properties in reasonable excitations
of this state. This construction, obtained by combining (8)
and (5), resolves the paradox that we presented here; in a
separate work [6], we have discussed how state dependence
also resolves other aspects of the information paradox.
Although other possibilities may emerge in the future, at

the moment we are able to perceive only two alternatives to

state dependence in the eternal black hole. First, one may
declare that the thermofield state itself lacks a smooth
horizon [9,21]. However, this contradicts AdS=CFT cal-
culations that appear to explicitly probe the interior [22].
Alternately, one may posit that the state develops a firewall
after some long time. We presented several arguments to
the contrary, but the strongest is that we can explicitly
construct the interior using (8) even for late times.
It is an unusual, and very interesting, aspect of local

operators in quantum gravity that one can prove that the
“same observable,” like a field at a “given” point in space,
is described by different operators in different patches of
the Hilbert space. This striking feature deserves further
attention.
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