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Fractional Brownian motion is a non-Markovian Gaussian process Xt, indexed by the Hurst exponentH.
It generalizes standard Brownian motion (corresponding toH ¼ 1=2). We study the probability distribution
of the maximum m of the process and the time tmax at which the maximum is reached. They are encoded in
a path integral, which we evaluate perturbatively around a Brownian, setting H ¼ 1=2þ ε. This allows us
to derive analytic results beyond the scaling exponents. Extensive numerical simulations for different
values of H test these analytical predictions and show excellent agreement, even for large ε.
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Random processes are ubiquitous in nature. While
averaged quantities have been studied extensively and
are well characterized, it is often more important to
understand the extremal behavior of these processes [1]
associated with failure in fracture or earthquakes, a crash in
the stock market, the breakage of dams, etc. Though many
processes can be successfully modeled by Markov chains
and are well analyzed by the tools of statistical mechanics,
there are also interesting and realistic systems which do not
evolve with independent increments, and thus are non-
Markovian, i.e., history dependent. Dropping the Markov
property, but demanding that a continuous process be scale
invariant and Gaussian with stationary increments defines
an enlarged class of random processes, known as fractional
Brownian motion (fBM). Such processes appear in a broad
range of contexts: Anomalous diffusion [2], polymer
translocation through a pore [3–5], the dynamics of a
tagged monomer [6,7], finance (fractional Black-Scholes
and fractional stochastic volatility models [8]), hydrology
[9], and many more.
FBM is a generalization of standard Brownian motion to

other fractal dimensions, introduced in its final form by
Mandelbrot and Van Ness [10]. It is a Gaussian process
ðXtÞt∈R, starting at zero, X0 ¼ 0, with mean hXti ¼ 0 and
covariance function (variance)

hXtXsi ¼ s2H þ t2H − jt − sj2H: ð1Þ
The parameter H ∈ ð0; 1Þ is the Hurst exponent; the
process typically grows with time as tH. Standard
Brownian motion corresponds to H ¼ 1=2; there the
covariance function reduces to hXtXsi ¼ 2minðs; tÞ.
Unless H ¼ 1=2, the process is non-Markovian, i.e., its
increments are not independent: For H > 1=2 they are
correlated, whereas for H < 1=2 they are anticorrelated,

h∂tXt∂sXsi ¼ 2Hð2H − 1Þjs − tj2ðH−1Þ: ð2Þ

In this Letter we study the maximum of a fractional
Brownian motion m ¼ maxt∈½0;T�Xt and the time tmax when

this maximum is reached [11] with the initial condition
X0 ¼ 0 and total time T > 0. Figure 1 shows an illustration
for different values of H, using the same random numbers
for the Fourier modes. We will denote PT

HðmÞ and PT
HðtÞ

their respective probability distributions. Previous studies
can be found in Refs. [13,14].
These observables are closely linked to other quantities

of interest, such as the first-return time, the survival
probability, the persistence exponent, and the statistics of
records. Though studied for a long time, most results for
non-Markovian processes are quite recent [15–17].
Following the ideas of Refs. [18–20], we encode our

observables PT
HðmÞ and PT

HðtÞ in a path integral,

Zþðm1; t1; x0;m2; t2Þ

¼
Z

Xt1þt2
¼m2

X0¼m1

D½X�Θ½X�δðXt1 − x0Þe−S½X�: ð3Þ

FIG. 1 (color online). Two realizations of fBM paths for
different values of H, generated using the same random numbers
for the Fourier modes in the Davis and Harte procedure [12]. The
observables m and tmax are given.
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This sums over all paths Xt, weighted by their probability
e−S½X�, starting at X0 ¼ m1 > 0 (shifted for convenience),
passing through x0 (close to 0) at time t1, and ending in
Xt1þt2 ¼ m2 > 0, while staying positive for all
t ∈ ½0; t1 þ t2�. The latter is enforced by the product of
Heaviside functions Θ½X�≔Qt1þt2

s¼0 ΘðXsÞ.
As Xt is a Gaussian process, the action S can (at least

formally) be constructed from the covariance function of
Xt. However, this is not enough to evaluate the path integral
(3) in all generality. Following the formalism of Ref. [20],
we use standard Brownian motion as a starting point for a
perturbative expansion, setting H ¼ 1

2
þ ε with ε a small

parameter; then the action at first order in ε is (we refer to
the appendix of Ref. [20] for the derivation)

S½X� ¼ 1

4Dε;τ

Z
T

0

_X2
τ1dτ1

−
ε

2

Z
T−τ

0

dτ1

Z
T

τ1þτ
dτ2

_Xτ1
_Xτ2

jτ2 − τ1j
þOðε2Þ: ð4Þ

The time τ is a regularization cutoff for coinciding times
(one can also introduce discrete times spaced by τ [20]).
The first line is the action for standard Brownian motion,
with a rescaled diffusion constant [21] Dε;τ ¼ 1þ
2ε½1þ lnðτÞ� þOðε2Þ≃ ðeτÞ2ε. The second line is a cor-
rection, nonlocal in time since fBM is non-Markovian.
Computing the ε expansion of Eq. (3) using Eq. (4) is

rather technical. A graphical representation of the key term
is given in Fig. 2. The result for Zþðm1; t1; x0;m2; t2Þ
covers a page, presented in Ref. [22]. We use this result
here to deduce its most interesting implications, starting
with the probability distribution of t ¼ tmax. For Browanian
motion (H ¼ 1=2), this distribution is well known as the
Arcsine law [23],

PT
1=2 ðtÞ ¼

1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðT − tÞp ; for t ∈ ½0; T�: ð5Þ

Until now, only scaling properties were known for this
distribution in the general case [24]. The path integral (3) is
linked to this distribution via

PT
HðtÞ ¼ lim

x0→0

1

Z

Z
m1;m2>0

Zþðm1; t; x0;m2; T − tÞ: ð6Þ

The normalization Z depends on x0 and T. Our result
for the distribution of tmax takes a nice form if we
exponentiate the order-ε correction obtained from Eq. (6),

PT
HðtÞ ¼

1

½tðT − tÞ�H exp
�
εF

�
t

T − t

��
þOðε2Þ: ð7Þ

This is plotted on Fig. 3. We see the expected change in the
scaling form of the Arcsine law,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðT − tÞp

→ ½tðT − tÞ�H
and a nontrivial change in the shape given by the function

F ðuÞ ¼ ffiffiffi
u

p ½π − 2 arctanð ffiffiffi
u

p Þ�

þ 1ffiffiffi
u

p
�
π − 2 arctan

�
1ffiffiffi
u

p
��

þ cst: ð8Þ

The time reversal symmetry t → T − t (corresponding to
u → u−1) is explicit; the constant ensures normalization.
We tested the prediction (7)–(8) with numerical simu-

lations of a discretized fractional Brownian motion for
different values of H. To this aim, we used the Davis and
Harte procedure as described in Ref. [12] (and references
therein). To compare numerical results with the theory, we
extract an estimation F ε

num of the function F as

F ε
num

�
t

T − t

�
≔
1

ε
ln

�
PT;H
numðtÞ½tðT − tÞ�H

�
: ð9Þ

Here, PT;H
numðtÞ is the numerical estimation of the distribution

of tmax for the discretized fBM at given H (obtained with
uniform binning). Apart from discretization effects, we

FIG. 3 (color online). Distribution of tmax for T ¼ 1 and
H ¼ 0.25 (red) or H ¼ 0.75 (blue) given in Eq. (7) (plain lines)
compared to the scaling ansatz, i.e., F ¼ cst (dashed lines) and
numerical simulations (dots). For H < 0.5 realizations with
tmax ≈ T=2 are less probable (by about 10%) than expected from
scaling. For H > 0.5 the correction has the opposite sign.

FIG. 2 (color online). Graphical representation of a contribution
to the path-integral Zþðm1; t1; x0;m2; t2Þ given in Eq. (3). The red
curve represents the nonlocal interaction in the action [second
line of Eq. (4)] while blue lines are bare propagators. There are
two other contributions when the time ordering is τ1 < τ2 < t1 or
t1 < τ1 < τ2, already computed in Ref. [20].
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should see significant statistical errors as ε → 0, and
systematic order-ε2 corrections for larger ε. As can be seen
on Figs. 3 and 4, our numerical and analytical results are in
remarkable agreement for all values ofH studied, both for ε
positive and negative. As an example, for H ¼ 0.75, the
correction to the pure scaling distribution has a relative
magnitude of 10% (see Fig. 3), which is measured in our
simulation with a relative precision of 0.5%. This precision
even allows us to numerically extract the subleading Oðε2Þ
correction; see Fig. 4 right.
We now present results for the distribution of the

maximum PT
HðmÞ. For Brownian motion

PT
1
2

ðmÞ ¼ e−m
2=ð4TÞffiffiffiffiffiffi
πT

p ; m > 0: ð10Þ

On the other hand, not much is known for generic values of
H. This distribution is of interest, as it is linked to the
survival probability SðT; xÞ, and the persistence exponent
θ. The latter is defined for any random process Xt with
X0 ¼ x as

SðT; xÞ ¼ probðXt ≥ 0 for all t ∈ ½0; T�Þ ∼
T→∞

T−θx : ð11Þ

For a large class of processes the exponent θ is independent
of x. For fractional Brownian motion with Hurst exponent
H it was shown that θx ¼ θ ¼ 1 −H [14,25]. To under-
stand the link of SðT; xÞ with the maximum distribution
for fBM, we use self affinity of the process Xt to write
PT
HðmÞ as

PT
HðmÞ ¼ 1ffiffiffi

2
p

TH
fH

�
mffiffiffi
2

p
TH

�
: ð12Þ

Here, f is a scaling function depending onH. Equation (10)
can be reformulated as f1=2ðyÞ ¼

ffiffiffiffiffiffiffiffi
2=π

p
e−y

2=2. The sur-
vival probability is related to the maximum distribution by

SðT; xÞ ¼
Z

x

0

PT
HðmÞdm ¼

Z
x=ð ffiffi

2
p

THÞ

0

fHðyÞdy: ð13Þ

This states that a realization of a fBM starting at x and
remaining positive is the same as a realization starting at 0
with a minimum larger than −x, due to translation
invariance of the fBM. Finally, the symmetry x → −x
gives the correspondence between minimum and
maximum.
These considerations allow us to predict the scaling

behavior of PT
HðmÞ at small m from the large-T behavior of

SðT; xÞ [14],

PT
HðmÞ ∼

m→0
mðθ=HÞ−1 ¼ mð1=HÞ−2: ð14Þ

Using our path integral, we can go further. The maximum
distribution can be extracted from Eq. (3),

PT
HðmÞ ¼ lim

x0→0

1

Z

Z
T

0

dt
Z
m2>0

Zþðm; t; x0;m2; T − tÞ:

ð15Þ

Its ε expansion leads to the scaling form of Eq. (12), with

FIG. 4 (color online). Left: Numerical estimation of F for different values of H on a discrete system of size N ¼ 212, using 108

realizations. Plain curves represent the theoretical prediction (8), vertically translated for better visualization. Error bars are 2σ estimates.
Note that for H ¼ 0.6, H ¼ 0.66, and H ¼ 0.8 the expansion parameter ε is positive, while for H ¼ 0.4, H ¼ 0.33, and H ¼ 0.2 it is
negative. Right: Deviation for large jεj between the theoretical prediction (8) and the numerical estimations (9), rescaled by ε. These
curves collapse for different values of H, allowing for an estimate of the Oðε2Þ correction to PT

HðtÞ.
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fHðyÞ ¼
ffiffiffi
2

π

r
e−y

2=2eε½GðyÞþcst� þOðε2Þ: ð16Þ

The constant term ensures normalization. The function G
involves the hypergeometric function 2F2:

GðyÞ ¼ y4

6 2F2

�
1; 1;

5

2
; 3;

y2

2

�
− 3y2 þ πð1 − y2Þerfi

�
yffiffiffi
2

p
�

þ
ffiffiffiffiffiffi
2π

p
ey

2=2yþ ðy2 − 2Þ½γE þ ln ð2y2Þ�: ð17Þ

This function has different asymptotics for small and
large y,

GðyÞ ∼
�
−2 lnðyÞ for y → ∞
−4 lnðyÞ for y → 0

: ð18Þ

The second line implies that PT
HðmÞ ∼m−4ε for m → 0,

which is consistent (at order ε) with the scaling result
(14), ð1=HÞ − 2 ¼ −4εþOðε2Þ. Formulas (16)–(17) also
predict the distribution at large m. The leading behavior of
PT
HðmÞ is Gaussian, which is well known, and can be

derived from the Borrel inequality [26]. Our result for the
subleading term can be written as

lim
y→∞

ln ðfHðyÞ expðy
2

2
ÞÞ

lnðyÞ ¼ −2εþOðε2Þ: ð19Þ

In order to test these predictions against numerical simu-
lations, we can rewrite the form (16) such that the small-m
behavior matches the exact scaling result (14)

fHðyÞ¼
ffiffiffi
2

π

r
e−y

2=2yð1=HÞ−2eε½GðyÞþ4 lnðyÞþcst� þOðε2Þ: ð20Þ

To extract the nontrivial contribution from numerical
simulations, we study for T ¼ 1 (see Fig. 5),

m2−ð1=HÞem2=4P1;H
numðmÞ¼exp

�
ε

�
G
�

mffiffiffi
2

p
�
þ4 lnðmÞþcst

��

þOðε2Þ: ð21Þ

The sample size N (i.e., lattice spacing dt ¼ N−1) of the
discretized fBM used for this numerical test is important, as
PnumðmÞ recovers Brownian behavior for m smaller than a
cutoff of order N−H. For small H the necessary system size
is very large, so we focus on H ≥ 0.4. Figure 5 presents
results for H ¼ 0.4, H ¼ 0.6, and H ¼ 0.75, without any
fitting parameter. The constant term in the scaling form,
relevant for normalization, is evaluated numerically. As
predicted, convergence to the small-scale behavior is quite
slow, especially for H ¼ 0.4. This would lead to a wrong
numerical estimation of the persistence exponent or other
related quantities if the crossover to the large-scale behav-
ior is not properly taken into account. At large scales, the
numerical data on Fig. 5 grow as m2ε, consistent with the
prediction (19).
To conclude, we have given analytical results for the

maximum of a fractional Brownian motion, and the time
when this maximum is reached. To our knowledge these are
the first analytical results for generic values of H in the
range 0 < H < 1, beyond scaling relations. Comparison to
numerical simulations shows excellent agreement, even far
from the expansion point H ¼ 1

2
.

FIG. 5 (color online). The combination (21) forH ¼ 0.4 (left),H ¼ 0.6 (middle), andH ¼ 0.75 (right). The plain lines are the analytical
prediction expðε½Gðm=

ffiffiffi
2

p Þ þ 4 lnðmÞ þ cst�Þ of the maximum without its small-scale power law and large-scale Gaussian behavior. The
symbols are numerical estimates forT ¼ 1 of the same quantitym2−1=H expðm2=4ÞPT¼1;H

num ðmÞ for different sample sizes. At small scale (of
orderN−H) discretization errors appear. At large scales the statistics is poor due to the Gaussian prefactor. The large scale behavior on each
plot is consistent with the power law m2ε.
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Our calculations also gave the joint probability of the
maximum, the time when the maximum is reached, and the
final point [22]. This allows us to address other observables
of interest, such as fractional Brownian bridges.
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