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We consider the kinetics of first contact between two monomers of the same macromolecule. Relying on
a fractal description of the macromolecule, we develop an analytical method to compute the mean first
contact time for various molecular sizes. In our theoretical description, the non-Markovian feature of
monomer motion, arising from the interactions with the other monomers, is captured by accounting for the
nonequilibrium conformations of the macromolecule at the very instant of first contact. This analysis
reveals a simple scaling relation for the mean first contact time between two monomers, which involves
only their equilibrium distance and the spectral dimension of the macromolecule, independently of its
microscopic details. Our theoretical predictions are in excellent agreement with numerical stochastic
simulations.
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Introduction.—Intramolecular reactions are ubiquitous
in nature. Examples are provided by the formation of RNA
hairpins [1] or DNA loops [2], the folding of polypeptides
[3], as well as the appearance of cycles in synthetic
polymers [4]. It is generally known that the structure of
a macromolecule has a strong influence on the dynamics of
its monomers [5,6], and that this complex intramolecular
dynamics implies nontrivial reaction kinetics [7] in the
diffusion limited regime. Until now, most of the theoretical
work devoted to the reaction times in macromolecules has
been limited mainly to linear chains [7–16]. However, there
are numerous examples of macromolecules which differ
from linear polymer chains [17,18]; their dynamic and
static properties often suggest a fractal character [6,18,19].
In particular, the dynamics of fractal macromolecules is
characterized by dynamical exponents that are different
from those of linear chains [6,19–21], leading presumably
to distinct first contact kinetics that cannot be deduced from
existing works on linear chains. It is important to note the
significance of fractals: They provide typical models, e.g.,
for hyperbranched polymers [6], proteins [21,22], sol-gel
branched clusters [23], and colloidal aggregates [24].
The aim of this Letter is to propose a theoretical

description of the mean first contact time (MFCT) between
two monomers in a fractal macromolecule, described as a
network of beads connected by springs. The cornerstone
feature of such fractal models is the anomalous vibrational
dynamics of the network [6,20,21]. It originates from the
non-Debye density of states which is characterized through
the so-called spectral dimension ds [25] (also known a
“fracton” dimension [26]). In this Letter, we go beyond
existing studies that focused on the specific case of
linear chains only [7–16], and show on general grounds
that ds (rather than the microscopic properties of the

macromolecule) is the key parameter that controls intra-
molecular reaction kinetics. Indeed, the spectral dimension
ds will be shown to leave its fingerprint in the scaling
behavior of MFCTs with the equilibrium distance between
monomers, as will be confirmed by explicit computations
on examples of fractal structures (see Fig. 1).
It is important to stress that in the case of macro-

molecules, the interactions between monomers lead to an
effective non-Markovian motion, which is the hallmark of
monomer dynamics [27]. In this Letter, we take into
account such non-Markovian features and describe the
contact kinetics for fractal structures. We show explicitly
that the non-Markovian effects increase with the complex-
ity and the degree of branching of the macromolecules.

FIG. 1 (color online). Structure of fractal macromolecules
investigated in this Letter. (a) Vicsek fractal, here of functionality
(i.e., number of nearest neighbors of the branching sites) f ¼ 4
(VF4); (b) dual Sierpiński gasket (DSG); (c) T fractal (TF). The
reactive monomers for which we compute the MFCT are
represented by red squares. These extended conformations show
only the topology of the structures.
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Model.—The macromolecular structures are represented
by N beads located at positions riðtÞ in a three-dimensional
space and connected by springs of stiffness K. The free-
draining dynamics of the structure is given by the Langevin
equations [5,6]:

ζ
∂
∂t riðtÞ þ K

XN

j¼1

AijrjðtÞ ¼ FiðtÞ; ð1Þ

whereA ¼ ðAkjÞ is the connectivity (Laplacian) matrix that
describes the topology of the structure. The off-diagonal
elements Aij are equal to −1 if beads i and j are connected,
and 0 otherwise. For each bead i, the diagonal element Aii
is equal to the number of bonds emanating from it. Also
Eq. (1) includes friction forces −ζ∂tri and stochastic forces
FiðtÞ obeying white noise statistics with amplitude
hFiαðtÞFjβðt0Þi ¼ 2kBTζδðt − t0Þδijδαβ, where kBT repre-
sents the thermal energy and α; β are spatial coordinates
x; y; z. It is natural to introduce the monomeric relaxation
time τ0 ¼ ζ=K, and the characteristic microscopic length
l ¼ ð3kBT=KÞ1=2 (in the case of structures without loops l2
is the mean-squared bond length).
Here we consider the contact kinetics between two given

monomers denoted “reactive monomers,” whose indexes
are called q1 and q2 (see Fig. 1). We introduce the vector
RðtÞ that joins them:

RðtÞ≡ rq1ðtÞ − rq2ðtÞ≡
XN

i¼1

hiriðtÞ; ð2Þ

where h is aN-dimensional vector defined by this equation,
which has only two nonzero elements in positions q1 and
q2. It is convenient to decompose the Gaussian vector RðtÞ
as a sum of independent modes,

RðtÞ ¼
X

λ

bλaλðtÞ; ð3Þ

where λ represents all the distinct nonvanishing eigenvalues
of A, b2λ is the norm of the orthogonal projection of the
vector h [defined in Eq. (2)] on the eigensubspace asso-
ciated to λ [28]. The aλðtÞ evolve independently of each
other with the correlation function:

haλ;αðtÞaλ0;βðt0Þi ¼ l2δα;βδλ;λ0e−λjt−t
0j=τ0=ð3λÞ: ð4Þ

In this picture of independent modes, the normalized
temporal autocorrelation function of the Cartesian compo-
nents (RxðtÞ; RyðtÞ; RzðtÞ) of vector RðtÞ follows from
Eqs. (3) and (4):

ϕðtÞ≡ hRαðtÞRαð0Þi
hRαð0Þ2i

¼
�X

λ

b2λ
λ
e−λt=τ0

��X

λ

b2λ
λ
: ð5Þ

Since RðtÞ is a Gaussian stochastic process, it is entirely
characterized by the function ϕðtÞ. We also introduce
n ¼ h½RðtÞ=l�2i ¼ P

λb
2
λ=λ, which for macromolecules

devoid of loops can be shown to be simply the number
of bonds connecting the reactive monomers.
Theories of first contact times.—We now sketch briefly

the method we use for the calculation of the MFCT, defined
as the average time needed for the reactive monomers to be
separated by a distance smaller than a (called the capture
radius), starting from an initial equilibrium configuration in
which the reactive monomers are not in contact. We
introduce the joint probability density fðfag; tÞ that contact
is made for the first time at time t and that, at this first
passage event, the macromolecule has a configuration
described by the set of modes fag ¼ ða1; a2…Þ. Let us
partition the trajectories that lead to a configuration fag (in
which the contact condition is satisfied) into two steps, the
first step consisting in reaching the target for the first time
at t0, and the second step consisting in reaching the final
configuration fag in a time t − t0. The mathematical
formulation that corresponds to this decomposition of
events is

pðfag; tÞ ¼
Z

t

0

dt0
Z

dfa0gfðfa0g; t0Þpðfag; t − t0jfa0gÞ;

ð6Þ

where pðfag; tjfa0ggÞ is the probability of fag at t starting
from fa0g at t ¼ 0 while pðfag; tÞ is the probability of fag
at t starting from the initial conditions. Although Eq. (6) is
exact, it is in general very difficult to solve. A classical
approximation, introduced by Wilemski and Fixman (WF)
[8], assumes that fðfag; tÞ is proportional to the equilib-
rium distribution of configurations that satisfy the con-
straint that a contact is formed. Introducing this
approximation into Eq. (6), integrating over all configura-
tions, and taking the long time limit lead to the estimate
TWF of the mean first contact time [15]

TWF ¼
Z

∞

0

dt

�
e−a

2ϕðtÞ2=½2ψðtÞ�

½1 − ϕðtÞ2�3=2 −
Z(a=ψðtÞ1=2)
Zða ffiffiffi

3
p

=l
ffiffiffi
n

p Þ

�
; ð7Þ

where ψðtÞ ¼ nl2½1 − ϕðtÞ2�=3 is the mean-square dis-
placement of RxðtÞ and ZðyÞ ¼ R∞

y dxx2e−x
2=2. While this

approximation takes into account some aspects of the
complex dynamics of the macromolecule through the
correlation function ϕ, it neglects non-Markovian (NM)
effects which can be quantitatively important. These NM
effects can be described by considering the distribution
of configuration at the first contact event πðfagÞ ¼R∞
0 dtfðfag; tÞ. The analytic expression for πðfagÞ is
unknown; following the case of linear polymers [12], we
assume that it is well approximated by a Gaussian dis-
tribution, which is therefore characterized by its first and
second moments. Its first moments, denoted mλ, are the
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average mode amplitudes aλ at the first contact instant t� [in
the direction of the vector Rðt�Þ], while the second
moments can be approximated by their equilibrium values.
Then, a precise estimate of the MFCT is obtained by
integrating (6) over all contact configurations, leading to

TNM ¼
Z

∞

0

dt

�
e−RπðtÞ2=½2ψðtÞ�

½1 − ϕðtÞ2�3=2 −
Z(a=ψðtÞ1=2)
Zða ffiffiffi

3
p

=l
ffiffiffi
n

p Þ

�
: ð8Þ

The difference between this expression and Eq. (7) lies in
the presence of the reactive trajectory RπðtÞ, defined as the
average of R at a time t after the first contact t� in the
direction of Rðt�Þ, and thus reads RπðtÞ ¼

P
λbλmλe−λt=τ0 .

The involved mλ are obtained from a set of self-consistent
equations, see the Supplemental Material [28] for details.
Cyclization for small capture radius.—In the limit of

a → 0 (while keeping a fixed number of monomers),
only the dynamics at small time scales matters, where
ψðtÞ≃ 4D0twith the local diffusion constantD0 ¼ kBT=ζ.
Also, at short times, we can write RπðtÞ≃ Rπð0Þ ¼ a.
Introducing these approximations into Eqs. (7) and (8), we
deduce that both the WF and the NM theories predict a
MFCT which reads

T ≃ τ0π
1=2n3=2l=ð2

ffiffiffi
6

p
aÞ ðfor a → 0Þ: ð9Þ

Thus, in this regime the MFCT is independent of the
particular polymeric structure, and has the same expression
as in the case of linear chains [12,15]. The convergence of
both Eqs. (7) and (8) to the scaling form (9) for small
capture radius is demonstrated in Fig. 2.
Scaling for large n.—When the size of the structure

grows, Eq. (9) is not valid anymore and the MFCT reflects
then the complex monomer dynamics, which becomes
subdiffusive, h½rqðtÞ − rqð0Þ�2i ∼ tγ , with γ a subdiffusive
exponent related to the spectral dimension ds of the
structure, γ ¼ 1 − ds=2 for ds < 2 [20,25,26,29]. We first
present a simple qualitative argument to derive the behavior

of the MFCT as a function of n, which we explicitly check
for the WF theory and validate next for the NM theory by a
numerical analysis of the analytical results of Eq. (8).
For a Markovian subdiffusive walker whose subdiffusive

exponent is γ, the time needed to find a pointlike target in a
confining volume of size L starting at a random position is
proportional to L2=γ [35]. Given that in our case the typical
length scale is L ∼

ffiffiffi
n

p
, the scaling argument

T ∼ τ0n1=γ ð10Þ

follows. We do not expect a strong dependence on the
capture radius since the dynamics of a monomer is compact
(or recurrent) [7,35]. In fact, the scaling (10) can be derived
in the WF approximation by noting that for extremal
monomers (i.e., monomers whose relative distance is
maximal), the time τ0n1=γ is also of the order of the
maximal relaxation time τN [26,30], such that the corre-
lation function scales as ϕðtÞ ¼ τNΦðt=τNÞ. Once this
equality is reported into Eq. (7) one obtains that T ∼ τN ,
which is the expected behavior (10), see the Supplemental
Material [28] for details. Strikingly, the MFCT is found to
depend on the polymer structure through ds only (and not
on its microscopic details). In particular, this shows that the
MFCT of highly branched structures (γ → 0) differs sig-
nificantly from that of linear chains (γ ¼ 1=2).

(a)

(b) (c)

FIG. 3 (color online). (a) NM and (b) WF MFCT for different
fractal structures as a function of n1=γ . The parameter γ is
obtained from the known values [20,31,37] of the spectral
dimension ds: for Vicsek fractals of functionality f, γ ¼
lnð3Þ= lnð3f þ 3Þ, for dual Sierpiński gasket γ¼ lnð5=3Þ=lnð5Þ,
and for T fractal γ ¼ lnð2Þ= lnð6Þ. The capture radius is a ¼ l. (c)
NMMFCT for the dual Sierpiński gasket for different values of a.
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n = 26
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n = 242

FIG. 2 (color online). TNM [Eq. (8)] and TWF [Eq. (7)] for
Vicsek fractals of functionality f ¼ 4 as a function of the capture
radius a. The lines represent the results of Eq. (9).
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Now, checking the scaling (10) requires the actual
computation of the correlation function ϕðtÞ, which itself
involves the diagonalization of A. However, a naive
diagonalization of this matrix (as usually done for linear
chains, where the analytic diagonalization is possible) does
not allow us to deal with large enough structures. This
difficulty can be overcome by exploiting the highly
symmetric nature of the fractal macromolecules we are
considering. First, we remark that the actual number of
variables needed to be taken into account is the number of
distinct eigenvalues, which is much lower than the total
number of beads N. Then, one can set up a decimation
procedure inspired by that used to find iterative formulas
for the eigenvalues [20,36]. Adapting this decimation
approach to the iterative computation of the coefficients
b2λ amounts to solving a linear algebra problem, as
described in the Supplemental Material [28]. In practice,
by using the WF and NM formalisms we were able to
calculate the MFCT for macromolecules containing as
many as 800 000 beads, which would not have been
possible through direct diagonalization.
Based on the iterative computation of b2λ , we test the

scaling behavior (Fig. 3) for different fractal structures
(represented in Fig. 1) and therefore for several values of
the subdiffusive exponent γ (or ds). As can be seen on
Fig. 3, for all these structures, the scaling T ∼ n1=γ is in
good agreement with the predictions of both the NM theory
and the WF theory. This confirms that the spectral
dimension ds of the structure plays a fundamental role
for MFCT. In particular, the functionality f, which deter-
mines γ, plays a crucial role and yields scaling behaviors
that can differ significantly from those of linear chains.
However, the presence of many loops in the dual Sierpiński
gasket does not modify the scaling behavior of the MFCT:
In Fig. 3(c) we show the results of the corresponding
MFCT TNM for three different values of a. We observe that
all curves scale in the same way for large n, independently
of the capture radius, a fact consistent with Eq. (10).
Comparison with numerical simulations.—We checked

the validity of our theoretical predictions by performing

Brownian dynamics simulations of Eq. (1), using the
algorithm of Ref. [38] with fixed time steps. The results
are presented in Table I for different fractal structures and
capture radia a. We observe that the WF theory system-
atically overestimates the MFCT, whereas the NM theory
describes the simulation data almost quantitatively, thereby
validating the accuracy of our analysis.
Average conformations at first contact.—Inspecting

Fig. 3 reveals that the WF theory overestimates the
MFCT by a numerical factor, which grows when γ
decreases. This fact is also clearly seen in Table I, and
confirmed by the numerical simulations. This means that,
with decreasing subdiffusive exponent γ, the macromo-
lecular conformations at the instant of first contact differ
more and more from equilibrium ones. To illustrate this
fact, we present on Fig. 4 the average spatial positions of
the monomers in Vicsek fractals at the instant of first
contact hziiπ ≡ hriðt�Þ · ûðt�Þi, where t� represents the first
contact instant, ûðt�Þ ¼ Rðt�Þ=jRðt�Þj gives the direction
between the reactive monomers at t� and i are the indices of
the beads that lie between the reactive monomers (on the
chain). In the equilibrium WF theory, all monomers
between the reactants (on the chain) are on average also
between the reactants in space at the instant of first contact,
irrespectively of the functionality of the macromolecule.
The NM theory, in turn, predicts that those monomers
which are close to the reactants are in average outside the
capture radius at t� (Fig. 4, symbols). Moreover, this effect
is more pronounced for Vicsek fractals of higher function-
alities, meaning that NM effects increase with the degree of
hyperbranching of the macromolecule. As shown in the
inset of Fig. 4, the simulations confirm these conclusions,
although the value of hziiπ is slightly overestimated in the
NM theory.

TABLE I. MFCT for the structures of Fig. 1 computed with the
WF (TWF) and NM (TNM) theories [with Eqs. (7) and (8)],
compared to the results Tsimu of the stochastic simulations of (1).
1=γ indicates numerical values of the scaling exponent in (10) (in
the case of linear chains it is equal to 2 [8,9,12]). All structures are
of generation g ¼ 3. The times are units of τ0.

a=l Structure 1=γ TWF TNM Tsimu

1 DSG 3.15 3.85 2.38 2.41� 0.02
TF 2.58 13.31 9.48 9.53� 0.07
VF3 2.26 166.8 111.5 113.6� 0.9
VF4 2.46 224.9 135.1 137.4� 1.4

2.5 VF3 2.26 87.81 37.52 37.47� 0.35
VF4 2.46 128.3 47.1 45.3� 0.5

0 9 18 27
i

-1

0

1

z i
π

f = 2 (linear chain)
f = 3
f = 4
f = 6
WF theory, any f

0 9 18 27
i

-1

0

1

z i
π

FIG. 4 (color online). Average spatial position hziiπ of the
monomers (numbered through i ¼ 1;…; n) connecting reactants
at the instant cyclization in the direction of the reaction, for
Vicsek fractals of different functionalities f with generation
g ¼ 3, as predicted by the NM (symbols) and WF theories (solid
line). Inset: same quantity determined from simulations, with the
same color code.
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Conclusion.—Summarizing, we have studied the
kinetics of first contact between two monomers belonging
to the same fractal macromolecule. We identified two
regimes: (i) for very small capture radius, the MFCT
becomes independent of the macromolecular structure
and originates essentially from the microscopic diffusive
motion of the monomers, whereas (ii) for larger capture
radius, the MFCT scales as a power law with the mean-
square distance n between the monomers, with an exponent
related to the spectral dimension ds and independent of
microscopic details. We confirmed this scaling law for a
wide variety of structures (with and without loops). The
non-Markovian effects are included by calculating the
average equilibrium conformation of the whole macromol-
ecule at the instant of first contact, and are found to be more
important when the degree of hyperbranching of the
structures increases. Finally, it would be interesting to
explore how the MFCT varies with the location of the
reactants in the structure or to generalize the theory to
include the effect of hydrodynamic interactions, which
typically would lead to new scalings [30].
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