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Population expansions trigger many biomedical and ecological transitions, from tumor growth to
invasions of non-native species. Although population spreading often selects for more invasive phenotypes,
we show that this outcome is far from inevitable. In cooperative populations, mutations reducing dispersal
have a competitive advantage. Such mutations then steadily accumulate at the expansion front, bringing
invasion to a halt. Our findings are a rare example of evolution driving the population into an unfavorable
state, and they could lead to new strategies to combat unwelcome invaders.
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Locust swarms, cancer metastasis, and epidemics are
some feared examples of spatial invasions. Spatial spread-
ing is the only mechanism for a species to become highly
abundant, whether we are considering a bacterial colony
growing on a Petri dish [1,2] or the human expansion across
the globe [3]. Many invasions are unwelcome because they
threaten biodiversity [4], agriculture [5], or human health
[6]. Unfortunately, efforts to control or slow down invaders
often fail in part because they become more invasive over
time [7]. The evolution of invasive traits and invasion
acceleration has been repeatedly observed in nature, from
the takeover of Australia by cane toads [8] to the pro-
gression of human cancers [9,10].

Selection for faster dispersal makes sense because it
increases the rate of invasion and allows early colonizers to
access new territories with untapped resources. A large
body of theoretical [11-13] and experimental work [7,8,14]
supports this intuition in populations that grow noncoop-
eratively, i.e., when a very small number of organisms is
sufficient to establish a viable population. However, many
populations, including cancer tumors [9,10,15-17], do
grow cooperatively, a phenomenon known in ecology as
the Allee effect [18]. In fact, cooperatively growing
populations can even become extinct when the population
density falls below a critical value, termed the Allee
threshold [19,20]. We find that the intuitive picture of
“the survival of the fastest” fails for such populations, and
natural selection can in fact favor mutants with lower
dispersal rates. Over time, repeated selection for lower
dispersal leads to a complete arrest of the spatial invasion.

To understand when invasions accelerate and when they
come to a halt, we analyzed a commonly used mathematical
model for population dynamics that can be tuned from
noncooperative to cooperative growth by changing a single
parameter. We considered the competition between two
genotypes with different dispersal abilities and computed
their relative fitness analytically. Our main result is that
selection favors slower dispersal for a substantial region of
the parameter space where the Allee threshold is sufficiently
high. Numerical simulations confirmed that evolution in
such populations gradually reduces dispersal and eventually

0031-9007/15/115(20)/208104(5)

208104-1

PACS numbers: 87.23.Kg, 05.60.Cd, 64.60.-1, 87.23.Cc

stops the invasion, even when multiple mutants could
compete simultaneously and other model assumptions were
relaxed.

Selective pressure on the dispersal rate can be under-
stood most readily from the competition of two types
(mutants, strains, or species) with different dispersal
abilities as they invade new territory. For simplicity, we
focus on short-range dispersal that can be described by
effective diffusion, and we only consider the dynamics in
the direction of spreading. Mathematically, the model is
expressed as
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where ¢; and ¢, are the population densities of the two
types that depend on time ¢ and spatial position x, D; and
D, are their dispersal rates, and g(c) is the density-
dependent per capita growth rate. We assume that g(c)
is the same for the two types and depends only on the total
population density ¢ = ¢y + ¢,. Since slower-dispersing
types often grow faster because of the commonly observed
trade-off between dispersal and growth, our results put a
lower bound on the fitness advantage of the type dispersing
more slowly. In the Supplemental Material, our analysis is
further generalized to account for the different growth rates
of the types [21].

For g(c), we assume the following functional form,
which has been extensively used in the literature
[12,18,33,34] because it allows one to easily tune the
degree of cooperation in population dynamics from purely

competitive to highly cooperative growth:

=r(K-c)(c-c")/K>. (2)
Here, r sets the time scale of growth, K is the carrying
capacity, i.e., the maximal population density that can be
sustained by the habitat, and ¢* is a parameter that
determines the degree of cooperation, which is known as

the Allee threshold. For c¢* < —K, the types grow

g(c)
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FIG. 1 (color online). The effects of cooperative growth on the
evolution of dispersal during invasion. (a) Simulations of the
competition between a slow (D; =0.5) and a fast (D, =1)
disperser during a spatial expansion. The fraction of the slower
disperser decreases in populations with a low Allee threshold
(c* =0.2), but increases in populations with a high Allee
threshold (c* = 0.35). (b) The fitness advantage of the slower
disperser (D, /D, = 0.95) changes from negative (deleterious) to
positive (beneficial) as the Allee threshold is increased. In
simulations, we never observed the coexistence of the two types;
instead, extinction is observed for the types that are deleterious
when rare (1 < 0), and complete fixation is observed for the types
that are beneficial when rare (4 > 0).

noncooperatively because g(c) monotonically decreases
from its maximal value at low population densities to zero
when the population is at the carrying capacity and
interspecific competition prevents further growth.
Population grows cooperatively for higher values of c¢*
because the per capita growth rate reaches a maximum at
nonzero density that strikes the balance between interspe-
cific competition and facilitation. For ¢* > 0, the effects of
cooperative growth become particularly pronounced.
Indeed, the growth rate is negative for ¢ < c¢* and, there-
fore, small populations are not viable. Such dynamics,
known as the strong Allee effect, arise because a critical
number of individuals is necessary for a sufficient level of
cooperation [10,18].

We first tested whether unequal dispersal rates lead to
fitness differences between the two types by solving Eq. (1)
numerically (see Supplemental Material [21]). When pop-
ulation growth was noncooperative, we found that the
faster-dispersing species have a competitive advantage in
agreement with the current theory [7,11,13]. Quite unex-
pectedly, the opposite outcome was observed for strongly
cooperative growth: The type with the lower dispersal rate
became dominant at the expansion front and eventually
took over the population [Fig. 1(a)].

To understand this counterintuitive dynamics, we exam-
ined how the relative fitness of the two types depends on the
magnitude of the Allee threshold c*. In the context of
spatial expansions, there are two complementary ways to
quantify the fitness advantage of a mutant. The first
measure, 4, is the exponential growth rate of the mutant,
similar to what is commonly done for populations that are
not expanding; a negative A corresponds to decay, not
growth. The second measure, 4., is the growth rate of the

mutant not in units of time, but rather in units of distance
traveled by the expansion. The two measures are related by
A = A,v, where v is the expansion velocity. The advantage
of the second measure is that it can be applied in situations
when the spatial distribution of the genotypes is available
for only a single time point. We were able to compute both
fitness measures analytically. The complete details of this
calculation are given in the Supplemental Material [21], but
our approach is briefly summarized below.

When a mutant first appears, its abundance is too small to
immediately influence the course of the range expansion;
therefore, we can study the dynamics of the mutant fraction
in the reference frame comoving with the expansion,
effectively reducing the two coupled equations in Eq. (1)
to a single equation. This remaining equation has the form of
a Fokker-Planck equation with a source term, and its largest
eigenvalue determines whether the total fraction of the
mutant will increase or decrease with time. We were able
to obtain this largest eigenvalue and the corresponding
eigenfunction exactly in terms of only elementary func-
tions. For small differences in the dispersal abilities
|D| — D,| < D,, our result takes a particularly simple form,

D,-D *
A=t (124 ’ (3)
6D, \/2D, K

which is valid for ¢* > —K/2; see Supplemental Material
for ¢* < —K /2 [21]. Thus, 4, is a linear function of the Allee
threshold c¢*, which changes sign at ¢* = K/4. For low
Allee thresholds, natural selection favors mutants with
higher dispersal; however, when growth is highly co-
operative, the direction of selection is reversed and slower
dispersers are favored. Numerical simulations of Eq. (1) are
in excellent agreement with our exact solution [Fig. 1(b)]. In
the Supplemental Material, we explain that the direction of
natural selection remains the same as the mutant takes over
the population, and we further discuss the effects of muta-
tions and demographic fluctuations by connecting the largest
eigenvalue to the fixation probability of the mutant [21].
Our finding that lower dispersal is advantageous seems
counterintuitive. Indeed, a mutant unable to disperse cannot
possibly take over the expansion front. The resolution of
this apparent paradox is that Eq. (3) is only valid for
D, =~ D,, and the direction of natural selection changes as
D, approaches zero. The exact expression for the selective
advantage for arbitrary D, /D, is given in the Supplemental
Material [21] and is plotted in Fig. 2 for different values of
the Allee threshold. When the Allee effect is absent or
weak, selection unconditionally selects for faster dispersal
[Fig. 2(a)], but as the Allee threshold increases and
becomes positive, mutants with very large dispersal rates
become less fit than the wild type [Fig. 2(b)]. This is
expected because mutants that disperse too far ahead of the
front cannot reach the critical density necessary to establish
a viable population. As a result, there is an optimal
improvement in dispersal abilities that is favored by natural

208104-2



PRL 115, 208104 (2015)

PHYSICAL REVIEW

week ending

(a) weak Allee effect, ¢* /K=—0.05

slower mutants faster mutants

o
i

o
o

fitness advantage, )\,
S
=

-0.2

low Allee threshold, ¢* /K=0.1

—
O
-

slower mutants faster mutants

o
o
]

0.00

fitness advantage, )\,

high Allee threshold, ¢* /K =0.35

slower mutants

faster mutants

1
10" 10° 10t
relative dispersal, D, /D,

FIG. 2 (color online). Allee effect determines how fitness
depends on dispersal. (a) Faster dispersers are unconditionally
favored when the Allee effect is weak. Note that the fitness
advantage reaches a maximum at a finite D;/D,. (b) When the
Allee effect is strong, but the Allee threshold is low, selection still
favors faster dispersal. Very fast mutants, however, are at a
disadvantage. (c) For high Allee threshold, only slower-dispersing
mutants can succeed, but mutants that disperse too slowly are
selected against. In all panels, the exact solution is plotted, and
colors highlight beneficial (red) and deleterious (blue) mutations.
The dashed line marks D; = D,, where both types have the same
fitness. Near this point, the fitness advantage of type 1 in the
background of type 2 equals the fitness disadvantage of type 2 in
the background of type 1, but this symmetry breaks down when the
dispersal rates of the types are very different; see Supplemental
Material [21]. Nevertheless, the exchange of D; and D, always
converts a beneficial mutant to a deleterious one. In consequence,
a mutation that is beneficial when rare will remain beneficial when
it approaches fixation, indicating that the direction of natural
selection is the same for small and large f.

selection. In contrast, when the Allee effect is sufficiently
strong, only reduced dispersal is advantageous [Fig. 2(c)].
Again, there is an optimal reduction in the dispersal rate
that results in the highest fitness advantage, and mutants
that disperse too slowly are outcompeted by the wild type.
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FIG. 3 (color online). When the rate of dispersal is allowed to
evolve, simulations show that invasions can both accelerate and
decelerate depending on the strength of an Allee effect. (a) The
mean dispersal rate increases to its maximally allowed value
when the Allee threshold is low (green), but the dispersal rate
decreases to zero when the Allee threshold is high (blue). (b) For
the same simulations as in (a), we plot the extent of spatial spread
by the populations. Invasions with a low Allee threshold
(c*/K = 0.2) accelerate, while invasions with a high Allee
threshold (¢*/K = 0.35) come to a standstill.

Although natural selection typically eliminates the
mutants that either increase or decrease the dispersal rate
by a large amount, sequential fixation of mutations could
lead to a substantial change in the expansion velocity.
Indeed, our results show that the fitness advantage of the
mutant depends on the relative, rather than absolute, change
in the dispersal ability. Thus, if the Allee effect is strong
enough to favor slower mutants, then mutants that reduce the
dispersal rate even further will become advantageous once
the takeover by the original mutant is complete. We then
expect that the repeated cycle of dispersal reduction will
eventually bring the invasion to a standstill. The opposite
behavior is expected when the Allee threshold is low.

To test these predictions, we performed computer sim-
ulations that relax many of the assumptions underlying
Eq. (1), as described in the Supplemental Material [21]. In
particular, we incorporated the stochastic fluctuations due
to genetic drift and allowed multiple mutations modifying
the dispersal rate to arise and compete at the same time.
Shown in Fig. 3, simulations display a steady decline in the
dispersal ability and expansion arrest for strongly co-
operative growth. Consistent with previous studies
[7,11-13], dispersal rates increase and the rate of invasion
accelerates when the Allee threshold is low.

Natural selection on dispersal has been extensively
studied, and many factors that favor faster or slower
dispersal have been identified [35-37]. Fast dispersers
can avoid inbreeding depression, escape competition, or
find a suitable habitat. At the same time, dispersal diverts
resources from reproduction and survival, increases pre-
dation, and can place organisms in inhospitable environ-
ments. In the context of range expansions, however, high
dispersal seems unambiguously beneficial because early
colonizers get a disproportionate advantage. Yet, we
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showed that spatial expansions can select for mutants with
lower dispersal rates. Continuous reduction of dispersal
rates then slows down, and eventually stops, further
invasion. Invasion arrest requires strong cooperative growth
and is in stark contrast to the dynamics in noncooperative
populations, where spatial expansions select for higher
dispersal.

We expect that our results are robust to the specific
assumptions made in this study such as the diffusionlike
dispersal and the specific form of the growth function
because, at its core, our analysis relies on very general
arguments (Supplemental Material [21]). Indeed, we argue
that faster mutants get ahead at low or negative Allee
thresholds because they can successfully grow at the front
and effectively establish secondary invasions; in contrast,
these dynamics do not occur at high Allee thresholds
because faster dispersers arrive at low-density regions that
cannot sustain growth.

At a very high level, our result can be understood as the
emergence of cheating in a cooperatively growing pop-
ulation. Cheating is a behavior that benefits the individuals,
but is detrimental to the population as a whole [38]. One
well-studied example is consuming, but not contributing, to
a common resource (public good), a behavior typical of
both humans [39-41] and microbes [38,42,43]. In the
context of population spreading, high dispersal can be
viewed as an effective public good because it creates high
densities in the outer edge of the expansion front, thereby
increasing the survival of new immigrants to that region.
Although high population densities benefit both slow and
fast dispersers equally, the latter pay a much higher cost
for producing this public good. Indeed, faster dispersers are
more likely to suffer higher death rates at the low-density
invasion front, where they arrive more frequently. As a
result, “cheating” by the slow dispersers is the reason for
their selective advantage.

In addition to the classical emergence of cheating,
expansion arrest is an example of evolution driving a
population to a less adapted state. Our ability to exploit
or trigger such counterproductive evolution may be impor-
tant in managing invasive species and agricultural pests, or
even cancer tumors. Concretely, our results open up new
opportunities to control biological invasions. Instead of
trying to destroy the invader, a better strategy could be to
elevate the minimal density required for growth (the Allee
threshold) to a level necessary for evolution to select for
invasion arrest. Such strategies could have important
advantages over the traditional approaches. Increasing
the Allee threshold in cancer tumors could overcome the
emergence of drug resistance because the bulk of the tumor
is at a high density and is not affected by the treatment.
Similarly, resistance should emerge much more slowly in
agricultural pests.

Although the manipulation of Allee thresholds is a
relatively unexplored and potentially difficult endeavor,

some management programs have been successful at
increasing the Allee effects in the European gypsy moth,
one of the most expensive pests in the United States [44—47].
These moths suffer from a strong Allee effect because they
struggle to find mates at low population densities [47].
Recent management programs exacerbated this Allee effect
by spreading artificial pheromones that disorient male
moths and prevent them from finding female mates, thereby
effectively eradicating low-density populations [44—46].
European gypsy moths and other pests with similarly strong
Allee effects could be close to the critical Allee threshold
necessary for the invasion arrest. In such populations, further
increase of the Allee effect could be more feasible and
effective than reducing the carrying capacity.

Beyond ecology, our results could also find applications
in other areas of science such as chemical kinetics, where
reaction-diffusion equations are often used. Quite broadly,
we find that a variation in the motility of agents can have
completely opposite effects on their dynamics, depending
on the reaction kinetics at the expansion front.
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