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Populations of mammalian stem cells commonly exhibit considerable cell-cell variability. However, the
functional role of this diversity is unclear. Here, we analyze expression fluctuations of the stem cell surface
marker Sca1 in mouse hematopoietic progenitor cells using a simple stochastic model and find that the
observed dynamics naturally lie close to a critical state, thereby producing a diverse population that is able
to respond rapidly to environmental changes. We propose an information-theoretic interpretation of these
results that views cellular multipotency as an instance of maximum entropy statistical inference.
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Clonal populations of unicellular organisms often
exhibit phenotypic diversity, which confers a selective
advantage under adverse environmental conditions. Well-
known examples include antibiotic bacterial persistence,
the lysis-lysogeny switch of λ phage, competence develop-
ment and sporulation of B. subtilis, and lactose uptake by E.
coli [1]. The ubiquity of this phenomenon indicates that it is
a generic, evolvable mechanism that facilitates collective
cellular dynamics by enabling robust, rapid responses to
diverse environmental changes. Recently, stochastic fluc-
tuations in the expression of important marker proteins
have been seen to generate functional diversity within
multipotent mammalian stem cell populations, suggesting a
similar role for cell-cell variability in higher organisms [2].
These observations have motivated speculation that func-
tional multipotency (the ability to differentiate along a
number of distinct cellular lineages) is a collective property
of stem and progenitor cell populations, reflective of fitness
constraints imposed at the population—rather than the
individual cell—level [3]. This perspective is appealing
since such regulated cell-cell variability, in principle,
allows a cellular population to remain primed to respond
quickly to a range of different differentiation cues while
remaining robust to cell loss. However, convincing dem-
onstrations of the potency of individual stem cells appear to
argue strongly against such a collective view (for example,
single long-term repopulating hematopoietic stem cells
are able to fully reconstitute the blood system of lethally
irradiated adult mice, and small numbers of pluripotent
stem cells are able to rescue the development of genetically
compromised embryos [4]). Thus, it is still unclear how

population-level and cell-intrinsic regulatory programs
interact to control mammalian stem and progenitor cell
dynamics.
Here, we propose a theoretical framework that reconciles

these disparate observations which views cellular multi-
potency as an instance of maximum entropy statistical
inference. In this view, individual cells satisfy any minimal
regulatory constraints imposed upon them (such as basic
metabolic requirements, etc.), yet, in the absence of defined
instructions, are maximally noncommittal with respect
to their remaining molecular identity, thereby generating
a diverse population that is able to respond optimally to
a range of unforeseen future environmental changes.
Thus, rather than viewing the multipotent cell state as an
attractor of the underlying molecular regulatory dynamics
(i.e., associating cellular identities with well-defined,
stable patterns of gene expression—a common modeling
assumption that has received some experimental validation
for differentiated cell types [5]), individual multipotent
cells are characterized by fundamental uncertainty in their
molecular state, and their populations exhibit variability in
accordance with this intrinsic uncertainty. However, since
this model exchanges the attractor hypothesis at the single
cell level for an ergodicity assumption for the underlying
stochastic processes, each individual cell has the latent
potential to assume every identity within the population,
and it thereby retains the regenerative capacity of the entire
population. As this view is fundamentally stochastic, its
corollary is that regulation of multipotency occurs at the
level of probabilities (i.e., at the population level), rather
than at the individual cell level.
In order to illustrate this perspective, we consider here

the expression dynamics of the stem cell surface marker
Sca1 (stem cell antigen 1) in populations of multipotent
erythroid, myeloid, and lymphocytic (EML) mouse
hematopoietic progenitor cells. It has previously been
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shown that Sca1 levels fluctuate stochastically in EML
cells in culture, with extrinsic “transcriptome wide” noise
driving transitions between Sca1 high and Sca1 low states,
which transiently prime individual cells for erythroid and
myeloid differentiation, respectively, and generate a char-
acteristically bimodal Sca1 expression distribution within
the population (see Fig. 1, bottom panel and Ref. [6]).
However, the underlying mechanisms by which these
stochastic fluctuations are regulated are not known. In
the absence of this knowledge we assume here that the
intracellular dynamics of the Sca1 expression level zðtÞ are
described by a generic stochastic differential equation:

dz
dt

¼ aðzÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2dðzÞ

p
ξðtÞ;

where ξðtÞ is a standard one-dimensional white noise
process [hξðtÞi ¼ 0 and hξðtÞξðsÞi ¼ δðt − sÞ] and dðzÞ
accounts for fluctuations in Sca1 levels due to both intrinsic
sources (i.e., noise in the molecular processes involved in
Sca1 production or decay, such as transcription, translation,
translocation, and degradation, etc.) and extrinsic sources
(i.e., fluctuations in upstream regulators and uncontrolled
environmental noise). Rather than model Sca1 levels
directly, it is convenient to introduce a reaction coordinate
xðzÞ such that the Fokker-Planck equation for the proba-
bility density ρðx; tÞ has the form

∂ρ
∂t ¼ LðρÞ; LðρÞ ¼ ∂

∂x
�
dψ
dx

ρ

�
þ σ

∂2ρ

∂x2 ; ð1Þ

with scalar potential ψðxÞ and diffusion coefficient σ. Such
a transformation, which maps the original dynamics to
those of a Brownian particle in a one-dimensional potential
field, may be achieved by application of Itō’s lemma (see
the Supplemental Material [7] for details). The stationary
solution of Eq. (1) is the Boltzmann-Gibbs distribution

ρ∞ðxÞ¼Z−1expð−ψ=σÞ; Z¼
Z

expð−ψ=σÞdx: ð2Þ

This solution exists so long as ψðxÞ grows sufficiently
rapidly as jxj → ∞ that the partition function Z remains
finite. In this case, the dynamics are ergodic and the free
energy

FðρÞ ¼
Z

ψρdxþ σ

Z
ρ log ρdx;

¼ EðρÞ − σSðρÞ;

where EðρÞ and SðρÞ are the energy and entropy func-
tionals, respectively, is a Lyapunov functional for the
dynamics. Thus, in order to model Sca1 dynamics phe-
nomenologically, we need only choose an appropriate
reaction coordinate x and form for the potential ψðxÞ.

Since noise in protein expression often scales with
abundance, a natural choice for the reaction coordinate
is x ¼ log z, as has been taken elsewhere [8] (see the
Supplemental Material [7] for details). In the absence of
detailed information on how Sca1 fluctuations are regu-
lated, the potential ψðxÞ may be estimated numerically
from the empirical Sca1 distribution by inverting Eq. (2).
The model then has a single free parameter, the diffusion
coefficient σ, which sets the time scale for the dynamics.
Estimates of σ and ψðxÞ were obtained by model fitting

using maximum likelihood estimation to evolving Sca1
expression distributions obtained experimentally using
flow cytometry starting from preselected populations of
Sca1 low, mid, and high expressing cells as they equili-
brate in culture over a period of 18 days (obtained in
Ref. [6]). Despite the simplicity of this model, excellent
agreement with the experimental time-series data was
observed from all three initial conditions, using the same
numerically estimated potential and the same estimate of
σ (Figs. 1 and 2).
It has previously been argued, based upon an analysis

of changing proportions of cells in the Sca1 high and low
states, that the observed dynamics are characterized by
slow “sigmoidal” relaxation towards the stationary state
[6]. Since a constant probability flux across a barrier
naturally leads to exponential relaxation, it was suggested
that these dynamics indicate deviation from expected first-
order kinetics, possibly due to the regulation of Sca1
fluctuations by cell-cell communication or autocrine signal-
ing. However, it is apparent that such recourse is not needed
since in all three cases the experimental system is initially
far from equilibrium, and therefore far from the regime in
which first-order kinetics apply. Rather, in accordance with
standard reaction-rate theory, the dynamics are character-
ized by an initial transient period during which local
equilibrium is first established within each potential well,
before transitions between wells occur [9]. Examination of
the free energy (which is a natural way to assess con-
vergence to equilibrium [10]) shows that this separation of
time scales generates the observed convergence dynamics
without the need to include additional regulatory mecha-
nisms in the model (see Fig. 2, left panel). These results
indicate that the observed Sca1 expression dynamics are
well described by a simple ergodic process in which
individual cells behave independently with respect to
Sca1 fluctuations.
This ergodicity is useful since it allows inference of the

behavior of individual cells from the population dynamics.
While stochastic excursions into the Sca1 high and low
states have previously been seen to transiently confer
different lineage biases to individual progenitor cells in
culture, the time scales upon which these excursions
occur at the single cell level are not known. Thus, the
distribution of first passage times (FPTs) out of the Sca1
low and high states are of particular interest. Defining the
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ranges of Sca1 low and high expression as L ¼ ð−∞; x0Þ
andH ¼ ðx0;∞Þ, respectively, where x0 is the intermediate
maxima in ψðxÞ, the FPT TðxÞ out of X for a cell initially
at x ∈ X (where X ∈ fL;Hg) may be obtained from the
backward Fokker-Planck equation associated with Eq. (1).
Denoting Gðx; tÞ ¼ PðTðxÞ ≥ tÞ, we solve

∂G
∂t ¼ −

dψ
dx

∂G
∂x þ σ

∂2G
∂x2 ;

with initial conditions Gðx; 0Þ ¼ 1 for x ∈ X and boundary
conditions Gðx0; tÞ ¼ ∂G=∂xð�∞; tÞ ¼ 0, from which the
FPT distributions FXðx; tÞ ¼ −∂G=∂t, for X ∈ fL;Hg,
may be obtained. Conventionally, the FPT distribution
FXðx; tÞ is evaluated from the local minima xX of ψðxÞ
in X since this is the state of highest probability.
Alternatively, we can weight each initial position within

X according to the probability that the cell is at this position
at equilibrium. We thus define the expected FPT distribu-
tion with respect to the Gibbs measure,

hFXiðtÞ ¼
Z

x∈X

ρ∞ðxÞ
wX

FXðx; tÞdx;

where wX ¼ R
x∈X ρ∞ðxÞdx ∈ ½0; 1� is the weight of the

population in X. Numerical approximations to FXðxX; tÞ
and hFXiðtÞ are shown in Fig. 2. These distributions yield
mean FPTs of 60 (56) hours for the low state and 1573
(1487) hours for the high state using FXðxX; tÞ [hFXiðtÞ].
These time scales are substantially longer than the EML
cell population doubling time (approximately 18–20 h
[11]), and they therefore suggest that Sca1 fluctuations
are not simply a consequence of the cell cycle. Rather, by
setting the expected length of time that a pair of cells
initially at the same position (e.g., daughter cells from the
same cell division) will forget their common origin—and
therefore the expected length of time that their identities
will be coupled—Sca1 switching appears to encode an
elementary form of epigenetic memory that endows indi-
vidual cells with a transient functional identity. Since the
rate of switching is slower than the rate of cell division, this
allows the formation of communities of cells that maintain
the same characteristics though divisions, and are therefore
able to adopt a temporarily stable functional phenotype.
Yet, by allowing mixing between the communities on a
feasible time scale, Sca1 fluctuations also safeguard long-
term cell-cell variability and ensure that a robustly hetero-
geneous population, able to rapidly respond to a range of
environmental challenges and resilient to the removal of
cellular subtypes, is maintained.
These results indicate that regulated fluctuations in Sca1

levels may be an intrinsic feature of EML cells in culture
since they provide a mechanism by which the population
hedges against unforeseen future environmental challenges
and thereby retains the capacity to differentiate along both
erythroid and/or myeloid lineages as required. If this is
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FIG. 2 (color online). (Left panel) Convergence to equilibrium
with respect to the free energy. Exponential convergence was
observed from all three initial conditions for large time, in
accordance with Eq. (1). First passage time (FPT) distributions
in the Sca1 low (middle panel) and high (right panel) states. The
FPT distributions FXðxX; tÞ starting at the local minima of the
potential ψðxÞ are shown in black; the expected FPT distributions
hFXiðtÞ averaging over all of the initial conditions in X ∈ fL;Hg
are shown in blue.
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FIG. 1 (color online). Model fit to experimental data. Model
simulations using the same estimates of ψðxÞ and σ are
shown against the three independent experimental time series;
simulations differ only in the experimentally prescribed initial
conditions. Data are in dark red and the fitted model is in black.
The potential ψðxÞ was estimated numerically via Eq. (2) using
aggregated data from the final time point.
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the case, then it is natural to ask if the experimentally
observed stationary Sca1 distribution is optimal for this
purpose; that is, if it is maximally variable in some
appropriately defined way. To investigate this, it is con-
venient to introduce a parametrization of the potential ψðxÞ
in order to compare distributions. A parsimonious model,
which allows for observed bimodality without introducing
large numbers of parameters, is

dψ
dx

¼ βx − α0 −
α1xn

Kn þ xn
;

where n is a positive even integer [12]. Intuitively, this
is a simple model of a positive-feedback based bistable
switch of the kind that commonly regulates cell fate
changes [13]. The stationary distribution p∞ðxÞ is then
characterized by four nonnegative dimensionless parame-
ters: θ ¼ ½n; α ¼ α0=α1; γ ¼ βK=α1; σd ¼ σβ=α21�.
For a fixed θ, the conditional probability ρ∞ðxjθÞ is

the minimizer of the free energy FðρÞ, and it may therefore
be viewed as the most noncommittal way to assign
probabilities subject to the particular constraints imposed
upon the dynamics by ψðx; θÞ (i.e., an instance of maxi-
mum entropy statistical inference) [14]. As each set of
model parameters defines a different potential, which
places different constraints upon the dynamics, we may
therefore determine the extent to which Sca1 fluctuations
optimize population diversity by assessing the proximity
of the empirical stationary Sca1 distribution to the maxi-
mum entropy distribution ρmax

∞ ðxÞ ¼ ρ∞ðxjθ�Þ, where
Sðρ∞ðxjθ�ÞÞ ¼ maxθSðρ∞ðxjθÞÞ. The relative entropy,

Dðρ∞∥ρmax
∞ Þ ¼

Z
ρ∞ log

�
ρ∞
ρmax
∞

�
dx;

is a natural way to measure this proximity. Since the Hill
coefficient n is, informally, a measure of the sensitivity of
the underlying switch to the input stimulus, it primarily
affects the curvature of the potential around the local
minima x0 (where present) and does not have a strong
effect on the entropy. However, by governing a cusp
bifurcation that determines whether the underlying switch
is in a monostable or a bistable state, α and γ can affect the
entropy of the stationary distribution considerably. Figure 3
shows how the relative entropy of p∞ðxÞ varies over the
biologically relevant bistable region of the αγ plane [15]. It
can be seen that the point estimate for the experimentally
observed Sca1 distribution is remarkably close to the
maximum entropy distribution ρmax

∞ ðxÞ. However, while
the maximum entropy distribution is in the center of the
bistable regime, the empirical distribution is close to one of
the critical lines that separate the bistable and monostable
regimes (shown in blue in Fig. 3, right panel). It has long
been suggested that such criticality may emerge naturally
in biological systems via self-organizing evolutionary
processes without the need for fine-tuning (i.e., as an

attractor of the evolutionary dynamics) since critical states
provide the dual benefits of stability and adaptability [16].
Here, proximity to criticality specifically regulates the rate
of mixing between the Sca1 high and low subpopulations,
and therefore the response time of the population to
environmental changes. To illustrate this, Fig. 3 also shows
how τ ¼ min½τ−; τþ�—where τ− and τþ are the mean
first passage times (MFPTs) in the low and high states,
respectively—varies in the vicinity of the maximum
entropy state in the αγ plane. It can be seen that the
minimum MFPT in the maximum entropy state is approx-
imately an order of magnitude greater than that of the
empirical distribution. Thus, while a population distributed
according to the maximum entropy distribution would
ultimately be able to adapt better to environmental changes
than the empirical population, it could not do so as rapidly.
In this regard, close proximity to criticality is vital since it
ensures that a diverse population is produced, yet mixing
between subpopulations occurs on a physically relevant
time scale. These results suggest that Sca1 levels are
regulated by fitness constraints that involve a trade-off
between maximizing cell-cell variability and maintaining
the ability to respond rapidly to environmental changes.
In summary, we have proposed an information-theoretic

interpretation of stem cell dynamics that views cellular
multipotency as an instance of maximum entropy statistical
inference. Although we have focused on Sca1 dynamics,
comparable expression fluctuations are known to generate
functional diversity in other mammalian stem cell systems
[17], and similar ergodic dynamics have been observed
to give rise to universal protein expression distributions
in microorganisms [18]. Thus, the generation of ergodic
expression fluctuations may be a generic way in which cell
populations maintain robust multilineage differentiation
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potential under environmental uncertainty. If so, then
molecular noise processing could be particularly important
in regulating stem cell function in a range of contexts. A
better understanding of the relationship between molecular
noise and stem cell identity should help to distinguish
variability due to interchangeable subpopulations of cells
from that due to the presence of distinct, noninterconver-
tible cell types (i.e., to determine which underlying sto-
chastic processes are ergodic) [19]. We anticipate that
advances in single cell profiling techniques will help to
address these issues in the near future.
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