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We present an analytical treatment of a genetic switch model consisting of two mutually inhibiting genes
operating without cooperative binding of the corresponding transcription factors. Previous studies have
numerically shown that these systems can exhibit bimodal dynamics without possessing two stable fixed
points at the deterministic level. We analytically show that bimodality is induced by the noise and find the
critical repression strength that controls a transition between the bimodal and nonbimodal regimes. We also
identify characteristic polynomial scaling laws of the mean switching time between bimodal states. These
results, independent of the model under study, reveal essential differences between these systems and
systems with cooperative binding, where there is no critical threshold for bimodality and the mean
switching time scales exponentially with the system size.
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Gene expression in living cells is regulated by tran-
scription factors that bind to specific DNA sequences,
thereby promoting or repressing the transcription of genes.
This mechanism allows for a “digital” response: when a cell
has to make a decision between expressing a certain
protein, A, or another, B, a biochemical regulatory network
leads the system to a state dominated by either A or B. Such
behavior is called bimodal. An example of such decision-
making circuits is given by the genetic toggle switch in
which two transcription factors mutually repress each other
[1,2]. This and other genetic switches allow cells to switch
between distinct phenotypic states and determine the cell’s
fate, in response to environmental stimuli and/or internal
signals [3–6].
Genetic switches are found to exhibit distinct behaviors

according to whether or not there is cooperative binding
(CB) of transcription factors (see, e.g., Ref. [7] in the
context of positive feedback). If CB is in play, more than a
single transcription factor molecule can bind to the DNA
sequence, and the binding probability depends on whether
there are molecules already bound to the sequence. CB is a
driver of bimodality and was previously thought to be a
necessary condition for bimodal behavior [8–11]. This is
because when CB is present in the rate equations, there are
(at least) two stable fixed points corresponding to states rich
in each type of transcription factor; in contrast, the absence
of CB yields a single stable fixed point where the two
transcription factors coexist.
Yet, in recent years, it has been shown in different

models theoretically [12–14] and experimentally [7] that
bimodality can emerge even without having bistability at
the deterministic level. In Ref. [7], bimodality has been
reported in a synthetic budding yeast system, which
concluded that the bimodal behavior is induced by

demographic noise. In Refs. [13,14], the authors have
numerically shown that a genetic toggle switch can exhibit
bimodal behavior due to demographic noise, even in the
absence of CB. To this end, in Ref. [15] the exclusive
switch model (ESM) was analytically studied via the
probability generating function. Yet, their analysis, valid
only in limiting cases, cannot uncover how demographic
noise gives rise to bimodal dynamics. Thus, the mechanism
of noise-induced bimodality in such systems without CB
remains unclear.
In this Letter we present an analytical treatment of the

ESM (see Fig. 1) which is found, e.g., as a coarse-grained
description of the lysis-lysogeny switch of phage λ [1,2]. We
begin by analyzing the case of equal degradation rates of the
transcription factors. We show that bimodality is driven by

FIG. 1 (color online). (Top panel) A schematic plot of the ESM
[14]. The repressors A and B cannot be bound simultaneously due
to overlap between their promoter sites. (Middle and bottom
panels) The difference and the sum of the copy numbers of A and
B obtained from stochastic simulations [16], with α ¼ 0.01,
k ¼ 10, and g ¼ 1.
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multiplicative noise; thus, the bimodal states correspond to
states for which the noise in the system vanishes. We further
find a transition between the bimodal and nonbimodal
regimes controlled by the noise strength, and we identify
the onset of bimodality as a function of the repressor strength.
Moreover, we show that the mean switching time (MST)
froma state rich inA to a state rich inB scales polynomially in
the system size, unlike what is typically found in bistable
systems. These claims are then generalized to the case of
different degradation rates using an adiabatic approximation.
Finally, we show that our results hold for other models
displaying noise-induced bimodality, such as the general
toggle switch [13,14]. Our analysis is also available in the
Supplemental Material and the Mathematica files [17].
The genetic toggle switch models mutual inhibition and

degradation of transcription factors. In the case of ESM,
there is an overlap between the promoters of A and B that
prevents simultaneous occupation of the two [10,13]; see
Fig. 1. Thus, at the deterministic level, the dynamics of the
free proteins A and B and the bound proteins rA and rB
satisfy the following set of equations [14]:

_n1 ¼ gAð1 − rBÞ − dAn1 − κ0n1ð1 − rA − rBÞ þ κ1rA;

_n2 ¼ gBð1 − rAÞ − dBn2 − κ0n2ð1 − rA − rBÞ þ κ1rB;

_rA ¼ κ0n1ð1 − rA − rBÞ − κ1rA;

_rB ¼ κ0n2ð1 − rA − rBÞ − κ1rB: ð1Þ

Here, n1 and n2 denote the copy numbers of proteins A and
B, respectively. Also, gA and gB are the maximal production
rates of proteins A and B, and dA and dB are the
corresponding degradation rates. In addition, the bound
repressors rA and rB, 0 ≤ rA; rB ≤ 1, are bound A and B
proteins that monitor the production of B and A, respec-
tively; κ0 denotes the binding rate of proteins to the
promoter, while κ1 is the dissociation rate.
For simplicity, we will henceforth assume gA ¼ gB ¼ g.

In the limit of dA; dB ≪ κ1, the relaxation of the bound
proteins is fast compared to that of the free proteins. As a
result, in this limit, one can adiabatically eliminate the fast
variables rA and rB and arrive at a set of two Michaelis-
Menten-like rate equations for n1 and n2 [14]:

_n1 ¼ f1ðn1; n2Þ − α1n1; _n2 ¼ f2ðn1; n2Þ − α2n2; ð2Þ

where fiðn1; n2Þ ¼ ð1þ kniÞ=ð1þ kn1 þ kn2Þ, and
i ¼ 1; 2. Here, we have defined the dimensionless repres-
sion strength k ¼ κ0=κ1 as the ratio of the binding and
unbinding rates, α1 ¼ dA=g and α2 ¼ dB=g are the rescaled
degradation rates of A and B, and we have rescaled time
t → gt. We will further assume that α1 ¼ α2 ≡ α, which
will be generalized later on.
In thisLetterwe focuson the strong repression limit,kni ≫

1 (i ¼ 1, 2) [14], which is found e.g. in a bacterial genetic
switch [8]. Since at the fixed point of system (2) ni ∼ α−1 (see

below), the strong repression limit becomes ε≡ α=k ≪ 1,
and one can naturally define the concentrations ofA andB by
x1 ¼ αn1, x2 ¼ αn2, respectively. The scaling of the fixed
points allows us to introduce the effective system size α−1.
Yet, while α−1 is proportional to the physical system size N
originating from system (1), they are not identical. In the
Supplemental Material [17] we discuss in detail the relation-
ship between our rescaled parameters and the physical system
size, and we also comment upon the biological relevance of
our approximations. Finally, note that at the fixed point, n�1 ¼
n�2 ≃ ð1þ εÞ=ð2αÞ (see the Supplemental Material [17]),
indicating that, in the deterministic limit, the system con-
verges into an equal state of A’s and B’s.
To account for the demographic stochasticity ignored by

Eq. (2), we can write down the corresponding master
equation for the probability Pn1;n2 to find n1 and n2
molecules of types A and B, respectively. Defining the
step operator E�

n FðnÞ ¼ Fðn� 1Þ, we have (see the
Supplemental Material [17])

_Pn1;n2 ¼ ½ðE−
n1 − 1Þf1ðn1; n2Þ þ ðE−

n2 − 1Þf2ðn1; n2Þ
þ α1ðEþ

n1 − 1Þn1 þ α2ðEþ
n2 − 1Þn2�Pn1;n2 : ð3Þ

Using the Gillespie algorithm [16], stochastic system (3) is
simulated and shown to exhibit bimodality in some range of
parameters (the middle panel in Fig. 1), in sharp contrast
with the deterministic dynamics (2) [13,14].
To this end, we introduce two auxiliary variables: the

total concentration, w ¼ x1 þ x2, and the (adimensional)
concentration difference u ¼ ðx1 − x2Þ=ðx1 þ x2Þ. Note
that u ≈�1 when the system is rich in one type of
transcription factor, whereas u ≈ 0 at the deterministic
fixed point. For strong repression, ε ≪ 1, the joint sta-
tionary probability density function (PDF), Psðu; wÞ,
decouples and satisfies Psðu; wÞ ¼ PsðuÞRsðwÞ (see the
Supplemental Material [17]). Here,

RsðwÞ ¼ ð2παÞ−1=2e−½w−ð1þεÞ�2=ð2αÞ; ð4Þ

indicating that the sum of A’s and B’s, represented by w, is
approximately conserved (see bottom panel in Fig. 1). To
find PsðuÞ, we consider its Langevin equation (see the
Supplemental Material [17])

du=d~t ¼ −uþ
ffiffiffi
k

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
ηð~tÞ; ð5Þ

where ~t ¼ 2gϵαt ¼ 2gα2t=k, t is the physical time used in
Eq. (1), and ηðtÞ denotes normalized Gaussian white noise.
Equation (5) captures the stochastic dynamics of the

system. It has already been treated in previous works
[18,19], and it suggests an explanation for the occurrence
of bimodality in the genetic toggle switch. The determin-
istic drag, −u, attracts the system to the stable fixed point,
u� ¼ 0, but since at this state the noise has maximum
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strength,
ffiffiffi
k

p
, the value of u is driven away, toward those

states at which the noise vanishes, u ¼ �1. These are the
bimodal states and replace the deterministic fixed points in
the CB case. How does this result depend on the repressor
strength k? Our previous argument has assumed that the
noise strength at the fixed point is large enough to oppose
the deterministic drag. Yet, taking k → 0 yields _u ¼ −u,
and thus uðtÞ → 0 as t → ∞. We can therefore expect that,
for small k’s, the system fluctuates around u ¼ 0 without
exhibiting bimodality. This transition from unimodality to
bimodality is elucidated by the stationary PDF, PsðuÞ, of
Eq. (5) [20]. We find that

PsðuÞ ¼ N ð1 − u2Þð1−kÞ=k; ð6Þ

where N ¼ Γðk−1 þ 1=2Þ=½ ffiffiffi
π

p
Γðk−1Þ� is a normalization

constant such that
R
1
−1 PsðuÞdu ¼ 1. Defining the critical

repressor strength, kC ¼ 1 (where the PDF concavity is
changed), we find two distinct regimes: nonbimodal,
k < kC, where the system displays Gaussian fluctuations
around the fixed point u� ¼ 0, and bimodal, k > kC, where
the system exhibits bimodality and switches between the
states u ¼ �1. In Fig. 2, Eq. (6) agrees excellently with
simulations for different values of k. Finally, that PDF (6)
satisfies jPsðuþ αÞ − PsðuÞj ≪ PsðuÞ at u ∈ ð−1; 1Þ val-
idates a posteriori the Fokker-Planck approximation (see
the Supplemental Material [17]) to the master equa-
tion (3) [21,22].
Equation (5) also allows calculating the MST between

the bimodal states [18,19]. In the bimodal regime, the MST
τ is the mean time it takes the system to go from a state rich
in one transcription factor—say, u ¼ 1—to a state rich in
the other, u ¼ −1, or vice versa. As shown in Refs. [18,19],
for k ≫ 1, the MST of Eq. (5) reads

τ≃ ðkþ 2Þ=ðgα2Þ; ð7Þ

wherewe have restored the original time units used inEq. (1).
This result (checked against simulations in Fig. 2) depends
polynomially on the effective system size α−1, in contrast
with the usually found exponential dependence of the mean
escape time in bistable switches; see, e.g., Refs. [23–27].
Hence, the absence of CB allows for much more frequent
switching between different phenotypic states, which can be
beneficial, e.g., in cases of severe stress [28].
The previous results can be generalized to the case of

different degradation rates, which can be analyzed using an
adiabatic elimination of the w variable [20,29,30]. A similar
treatment can also be used to investigate the case of
different repression strengths k1 ≠ k2. Yet, as can be
checked, for ε ≪ 1 the effect of uneven k’s on the PDF
and the MST is much weaker than the effect of uneven α’s.
We again consider Eq. (2) assuming, without loss of

generality, α2 < α1, and we denote α1 ≡ α and α2 ≡ δα,
where δ ∈ ð0; 1�. Defining u ¼ ðx1 − x2Þ=ðx1 þ x2Þ and
w ¼ x1 þ x2, where x1 ¼ αn1 and x2 ¼ αn2 are the concen-
trations, the stationary PDF, QsðuÞ, of finding concentration
u, reads (see the Supplemental Material [17] for details)

QsðuÞ ¼ ZPsðuÞð1þ uþ δ − uδÞ−1−2=½αð1þδÞ�

× exp

�
1

k

�
1 − δ

1þ δ

��
2uþ ln

�
1 − u
1þ u

���
; ð8Þ

where PsðuÞ is given by Eq. (6), and Z is a normalization
factor such that

R
1
−1QsðuÞdu ¼ 1. Our theory [Eq. (8)] agrees

excellently with simulations; see Fig. 3.
The PDF (8) is a tilted version of PDF (6); indeed, the

former reduces to the latter for δ ¼ 1. Since we have chosen
δ < 1, we find that the system resides most of the time at
the metastable mode of u ¼ −1 and occasionally jumps to
the transiently metastable mode of u ¼ 1 (the opposite
would occur for δ > 1). Similarly, as for the case of δ ¼ 1,

FIG. 2 (color online). (Left panel) The PDF PsðuÞ for different
values of k. For k > 1, a bimodal PDF appears, for k ¼ 1 the PDF
is flat, and for k < 1 it is unimodal, with a peak on u ¼ 0. The
solid lines are given by Eq. (6), while markers are obtained by
simulations [16], with α ¼ 0.01. (Right panels) The MST as a
function of α (upper right panel) and k (lower right panel) for
g ¼ 1. Each marker is obtained by averaging 200 numerical
realizations [16], whereas the solid lines are given by Eq. (7).

FIG. 3 (color online). (Left panel) QsðuÞ [Eq. (8)] (the solid
lines) is compared for different values of δ against simulations
[16] (the symbols). Here k ¼ 5 and α ¼ 0.01. (Right panel) MST
τ vs 1=α, for k ¼ 50 and g ¼ 1. Each marker is obtained by
averaging 200 numerical realizations, while the solid lines are
given by Eq. (9) with A ¼ 50 for δ ¼ 0.8 and A ¼ 100 for
δ ¼ 0.9.
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by decreasing k there exists a transition from a state rich in
one type of transcription factor to a state where both types
coexist, although not equally. Again, this is determined by a
critical repressor strength kC, satisfying kC ¼ 2=ð1þ δÞ;
see the Supplemental Material [17]. For k > kC, both u ¼ 1
and u ¼ −1 are noise-induced metastable states, although
the system is biased toward u ¼ −1 as the degradation rate
of the corresponding protein (of type B) is smaller. In
contrast, as k is decreased below kC, the PDF flips, and
peaks at u� ¼ −1þOðεÞ; see the Supplemental
Material [17].
Since the MST τ from u ¼ −1 to u ¼ 1 turns out to

depend exponentially on the effective system size α−1 (see
below), given Eq. (8), τ satisfies in the leading order τ ∼
Qsð−1Þ=min½QsðuÞ� [23,31]. Here, the minimum of QsðuÞ
is obtained in the close vicinity of u ¼ 1, satisfying
um ≃ 1 − 2εðk=kC − 1Þ=ð1 − δÞ≃ 1. As QsðuÞ diverges
at u ¼ −1, we thus compute the limit lima→0Qsð−1þ
aÞ=QsðumÞ and find, in the leading order of ε ≪ 1,

τ≃ A
gα

exp

�
2

αð1þ δÞ ln
1

δ

�
: ð9Þ

Here, A ¼ Aðk; δÞ is an unknown prefactor, and we have
restored the physical time units. Equation (9) agrees well
with simulations (see Fig. 3) and, in contrast to Eq. (7),
depends exponentially on the effective system size.
Finally, we can use the analysis above for other models

that exhibit noise-induced bimodality, such as the general
toggle switch, described by Eq. (2) with

fiðn1; n2Þ ¼ ½1þ ðknjÞh�−1; i ≠ j ¼ 1; 2; ð10Þ

where the Hill coefficient is h ¼ 1 [14]. In principle, the
analysis can be done in the same manner as for the ESM.
Yet, the task is slightly more difficult since the Langevin
equation for w ¼ x1 þ x2 does not yield a Gaussian PDF
for RsðwÞ, which makes the equation for u less tractable.
Nonetheless, we have numerically found the onset of
bimodality to be at k > kC ¼ 1 and that the MST behaves
similarly to the ESM; see Fig. 4. In sharp contrast, the
genetic toggle switch model with CB, for which fiðn1; n2Þ
are given by Eq. (10) with Hill coefficient h ≥ 2, displays
(at least) two stable fixed points. In this case there is no
threshold for bimodality when ε ≪ 1, and one expects an
exponential dependence of the MST on the system’s size
[32]. In Fig. 4 we compare the MSTs and PDFs of several
models with and without CB. Our simulations indicate that
the MST in the case of CB with h ≥ 2 yields a stretched-
exponential dependence of the MST on the system’s size.
This is a nontrivial result and requires a further study. While
this is beyond the scope of this Letter, we believe the
formalism we have developed can be used to study toggle
switch models with CB as well, as long as we are in the
strong repression limit.

We have presented an analytical treatment of the ESM
demonstrating a bimodal behavior in the absence of two
stable fixed points at the deterministic level. Bimodality is
induced by multiplicative noise: the noise strength vanishes
at the bimodal states, whereas it is maximal at the single
stable fixed point. This phenomenon, which has attracted
much interest in various fields [18,33–37], is linked here to
previous numerical [13,14] and experimental [8] findings
on the genetic toggle switch.
We have shown that bimodal behavior ceases to occur if

the noise strength in the system, controlled by the repres-
sion strength k, is reduced below a critical threshold. This
transition, absent in bistable systems, is similar to that
found in other noise-induced bimodal systems [18,33,38].
Moreover, we have shown here that the MST between
bimodal states exhibits a polynomial, rather than exponen-
tial, scaling on the system size. In genetic toggle switches,
the noise is controlled by the repression strength k,
suggesting that bimodality can be achieved or lost by
biological fine-tuning of reaction rates.
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