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We study superconductivity in spin-orbit-coupled systems in the vicinity of inversion symmetry
breaking. We find that, because of the presence of spin-orbit coupling, fluctuations of the incipient parity-
breaking order generate an attractive pairing interaction in an odd-parity pairing channel, which competes
with the s-wave pairing. We show that Coulomb repulsion or an external Zeeman field suppresses the
s-wave pairing and promotes the odd-parity superconducting state. Our work provides a new mechanism
for odd-parity pairing and opens a route to novel topological superconductivity.
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Over the last few years, the search for unconventional
superconductors has received a new impetus from the study
of topological phases of matter. After early works on
superfluid Helium-3 [1] and recent developments on
topological insulators, it has been theoretically established
[2] that superconducting states can be classified by their
topological properties. Unlike conventional s-wave super-
conductors, topological superconductors are predicted to
harbor exotic quasiparticle excitations on the boundary.
There is currently intensive effort searching for topological
superconductivity in naturally occurring materials (see for
example, Refs. [3–14]), though definitive experimental
evidence is still lacking. For the majority of superconduc-
tors that are time-reversal and inversion symmetric, the
single most important requirement for being topologically
nontrivial is that the pairing order parameter must be odd
under spatial inversion [3,15], e.g., p- or f-wave. This
rekindles interest in finding odd-parity superconductors.
The parity of the pairing order parameter is tied with its

spin. In the absence of spin-orbit coupling, odd-parity
pairing is spin-triplet and vice versa. It has long been
known from studies on superfluid He [16] that triplet
pairing can be induced by enhanced ferromagnetic spin
fluctuations in the vicinity of ferromagnetic instability. This
mechanism for triplet pairing, if realized in the solid-state,
can lead to a topological superconductor [17], analogous to
the topological superfluid He.
In this Letter, we propose an alternative mechanism

for odd-parity pairing in the vicinity of nonmagnetic,
inversion-symmetry-breaking phases in spin-orbit-coupled
systems. In the presence of spin-orbit interaction, such
parity-breaking orders directly couple to an electron’s spin
texture on the Fermi surface [18]. As a result, the fluctua-
tions of an incipient parity-breaking order, which we call
“parity fluctuations,” generate an effective interaction that
is strongly momentum and spin dependent. Without
assuming any special features of the Fermi surface, we
show on general ground that this effective interaction is

attractive in both the s-wave and an odd-parity pairing
channel. Moreover, the pairing interactions in the two
channels are found to be of the same order of magnitude,
and in several cases, roughly equal. We show that either
Coulomb interaction or Zeeman field suppresses the
s-wave pairing and promotes the odd-parity superconduct-
ing state on the border of parity-breaking order. Finally, we
propose the pyrochlore oxide Cd2Re2O7 and doped SrTiO3

heterostructures as candidate systems where odd-parity
superconductivity meditated by parity fluctuations may
be realized.
In this work, we consider parity-breaking orders that are

time-reversal invariant and carry zero momentum. Such
order may originate from an unstable odd-parity phonon or
the electron-electron interaction. The order parameter can
be represented by a Hermitian fermion bilinear operator Q̂
with the same symmetry, which takes the form

Q̂ ¼
X
k;αβ

ΓαβðkÞc†kαckβ; with Γ†ðkÞ ¼ ΓðkÞ: ð1Þ

Here α; β are pseudospin indices for the two degenerate
states at every k. In spin-orbit-coupled systems, these states
are not spin eigenstates but remain degenerate in the
presence of time-reversal (Θ) and inversion (P) symmetry
[19]. For simplicity of notation, we have chosen an Ising-
type parity-breaking order in Eq. (1). Vector and high-
rank tensor orders are described by a multiplet of Hermitian
operators denoted by Q̂μ; these orders will be encoun-
tered later.
Different types of parity-breaking orders are classified by

their transformation properties under crystal symmetry
operations, which act on an electron’s spin and momentum
jointly. Before proceeding to the symmetry analysis, we
emphasize that the form factors for physical observables,
such as ΓðkÞ for Q̂, depend on the basis for the doubly
degenerate energy band. For the purpose of this work, it is
most convenient to choose the “manifestly covariant Bloch
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basis” (MCBB) [18]. In this basis, the two-component
electron operator ðc†k1; c†k2Þ transforms simply as a spinor
field in k space under time reversal and crystal symmetry
operation g ∈ Oð3Þ:

Θc†kαΘ−1 ¼ ϵαβc
†
−kβ; ð2Þ

gc†kαg
−1 ¼ UαβðgÞc†k�β; ð3Þ

where k� ¼ gk is the star of k, ϵαβ is the Levi-Civita
symbol, and UðgÞ is the Uð2Þ matrix that represents the
action of g on the pseudospin, in the same way as it acts on
the spin of a free electron.
It then follows from the symmetry transformation laws

(2, 3) that the form factor ΓðkÞ of time-reversal-invariant
and parity-breaking orders satisfies the condition

ΓðkÞ ¼ ϵΓ�ðkÞϵ ¼ −Γð−kÞ; ð4Þ

and hence takes the general form [18]

ΓðkÞ ¼ dk · σ; with dk ¼ −d−k; ð5Þ

where σ ¼ ðσx; σy; σzÞ denotes Pauli matrices in pseudo-
spin space. The d-vector field dk defines the pseudospin
splitting in the ordered state, whose magnitude and direc-
tion vary over the Fermi surface.
It may seem counterintuitive that nonmagnetic parity-

breaking orders, such as structural distortion and orbital
order, couple to an electron’s spin. As we show by example
in the Supplemental Material [20], this remarkable fact is a
general consequence of spin-orbit interaction in centrosym-
metric systems. It will play a crucial role in meditating
superconductivity in the vicinity of parity-breaking order.
In contrast, for spin-rotationally invariant systems, the
above symmetry analysis implies that parity-breaking
orders at zero momentum cannot couple directly to
electrons on the Fermi surface, unlike the nematic order
that is even parity [24,25]. Therefore, spin-orbit coupling is
crucial for superconductivity meditated by odd-parity
phonons or parity fluctuations.
In a system close to a parity-breaking instability, the

effective interaction arising from the order parameter
fluctuations is given by

Heff ¼
X
q

VqQ̂ðqÞQ̂ð−qÞ; ð6Þ

where Q̂ðqÞ ¼ Q̂†ð−qÞ is the Fourier transform of the order
parameter field in real space:

Q̂ðqÞ ¼ 1

2

X
k;αβ

ðΓαβðkþ qÞ þ ΓαβðkÞÞc†kþqαckβ: ð7Þ

Within the random-phase approximation (RPA), Vq can be
expressed in terms of the q dependent susceptibility:

Vq ¼ I=½1þ χðqÞI�. Vq is enhanced and has a maximum
at q ¼ 0 close to a q ¼ 0 instability. Restricting the
effective interaction (6) to the Cooper pairing channel with
zero total momentum, we obtain the pairing interaction

Hp ¼
X
k;k0

Vαβγδðk;k0Þc†kαc†−kβc−k0γck0δ: ð8Þ

Using (5), (6), and (7), we find the momentum- and
pseudospin-dependent interaction vertex Vαβγδðk;k0Þ is
given by

Vαβγδðk;k0Þ ¼ −
1

8
½Vk−k0 ð~dk þ ~dk0 Þ · ~σαδð~dk þ ~dk0 Þ · ~σβγ

− Vkþk0 ð~dk − ~dk0 Þ · ~σαγð~dk − ~dk0 Þ · ~σβδ�:
ð9Þ

To proceed, we expand Vk�k0 in the pairing interaction
(9) in terms of spherical harmonics on the Fermi surface:
Vk�k0 ¼ V0∓V1k̂ · k̂0 þ � � �. Below we consider the lead-
ing term V0. Despite the fact that V0 is a constant, the
interaction vertex (9) inherits the form factor of the parity-
breaking order parameter Q̂, which is strongly pseudospin
and momentum dependent. It consists of two types of
terms: V ¼ Ve þ Vo, where Ve contains the product of
components with the same momentum:

Ve
αβγδðk;k0Þ ¼ −

V0

8

X
i;j

ðdikdjk þ dik0d
j
k0 Þðσiαδσjβγ − σiαγσ

j
βδÞ;

and Vo contains the cross terms:

Vo
αβγδðk;k0Þ ¼ −

V0

8

X
i;j

ðdikdjk0 þ dik0d
j
kÞðσiαδσjβγ þ σiαγσ

j
βδÞ:

Note that Ve (Vo) is an even (odd) function of k, k0, and
antisymmetric (symmetric) under exchanging the
pseudospin indices either αβ or γδ. Therefore, Ve and
Vo correspond to the even-parity pseudospin-singlet
and odd-parity pseudospin-triplet pairing channels,
respectively.
The above pairing interaction can be decomposed into

different superconducting channels that belong to different
representations of the crystal symmetry group. Before
proceeding, we describe the general classification of
time-reversal-invariant superconducting order parameters,
taking the form

F̂† ¼ 1

2

X
k;αβγ

ϵβγFαβðkÞc†kαc†−kγ; ð10Þ

where the form factor FðkÞ satisfies the symmetry con-
dition
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F†ðkÞ ¼ FðkÞ ¼ −ϵF�ð−kÞϵ: ð11Þ

Moreover, it follows from (3) that ϵβγc
†
kαc

†
−kγ has the same

transformation law under crystal symmetry operations as
c†kαckβ. This implies every time-reversal-invariant super-
conducting order parameter has a counterpart in the
particle-hole channel, with the same symmetry. In particu-
lar, odd-parity superconducting order parameters, which
have FðkÞ ¼ −Fð−kÞ, admit the same classification as
particle-hole orders Q̂ described earlier.
To proceed with the classification, it is instructive to first

consider the most symmetric group Oð3Þ, the group of all
joint 3D rotations and reflections of spin and momentum,
from which all point groups descend. In this case, all
possible odd-parity orders defined by the form factor (5) are
classified by the total angular momentum J and the orbital
angular momentum L (which must be odd) [18]. At the
lowest order L ¼ 1, there are three types of particle-hole
orders: gyrotropic, ferroelectric, and multipolar. The cor-
responding form factors are listed in Table I. Classification
for 2D systems with Oð2Þ symmetry is also presented.
As expected from the one-to-one correspondence

between particle-hole and particle-particle orders, these
form factors also classify odd-parity pairing symmetries of
spin-orbit-coupled superconductors. For example, the pair-
ing order parameter with the isotropic form factor Γ1 ¼
k · σ coincides with a particular choice of order parameters
for the Balian-Werthamer phase of He-3 [26]. On the other
hand, the pairing order parameters with anisotropic form
factors Γ2 and Γ3 are time-reversal invariant and sponta-
neously break the rotational symmetry, resulting in an odd-
parity superconductor with nematic order [6]. To our
knowledge, such anisotropic phases have not been found
in He-3; their existence requires spin-orbit coupling.
We now use the effective interaction Heff given by

Eq. (6) to study superconductivity in the vicinity of each

type of parity-breaking order in Table I; for multi-
component operator Q̂μ, summation over μ is taken. In
all cases, we restrict Heff into a Cooper pairing channel
with zero momentum, and decompose the pairing inter-
action Hp into various superconducting channels:

Hp ¼ V0

�
a0Ŝ

†Ŝþ
X
n

an
X
μ

F̂μ†
n F̂μ

n

�
; ð12Þ

where Ŝ† ¼ ð1=2ÞPk;αβϵαβc
†
k;αc

†
−kβ is the s-wave super-

conducting order parameter, and Fμ†
n denotes various

odd-parity superconducting order parameters defined in
Eq. (10) and classified in Table I. Here n numerates
different odd-parity pairing channels and, again, summa-
tion over μ implies summation over different components
in the case of multicomponent pairing orders. Coefficients
an take different values for different types of interactions,
and all are gathered in the Table II. Details of our
calculation can be found in the Supplemental Material
[20]. Since V0 < 0, an > 0 means attractive interaction in
the corresponding pairing channel.
From Table II, we obtain the superconducting instability

driven by each type of parity fluctuations. In all cases, there
is an instability in the s-wave channel, similar to phonon-
meditated pairing in conventional superconductors. More
importantly, in all cases except the multipolar orders Γ3 and
~Γ4, there is also an instability in the odd-parity channel with
the same symmetry as the incipient particle-hole order that
drives superconductivity. Remarkably, for Ising type orders
described by a single-component Q̂, the pairing attraction
in the odd-parity channel is equal to the one in the s-wave
channel, leading to identical superconducting transition
temperatures. For ferroelectric type orders described by a
vector Q̂i, the pairing attraction in the odd-parity channel is
weaker than, but still of the same order of magnitude as, the
one in the s-wave channel.

TABLE I. Classification of odd-parity order parameters for
spin-orbit coupled systems, and their transformation properties
under joint spin and momentum rotations in three and two
dimensions. Rank 2 tensor Γ3 ( ~Γ4) is symmetric and traceless, and
hence has 5 (2) independent components. All parity orders FðkÞ
admit the same classification as ΓðkÞ and have exactly the same
functional form.

3D system with Oð3Þ symmetry Transformation property

Γ1ðkÞ ¼ ðk̂ · σÞ pseudoscalar
Γi
2ðkÞ ¼ ½k̂ × σ�i vector

Γij
3 ðkÞ ¼ k̂iσj þ k̂jσi − 2

3
ðk̂ · σÞδij rank 2 tensor

2D system with Oð2Þ symmetry Transformation property

~Γ1ðkÞ ¼ k̂xσx þ k̂yσy pseudoscalar
~Γ2ðkÞ ¼ k̂xσy − k̂yσx pseudoscalar
~Γi
3ðkÞ ¼ k̂iσz vector
~Γij
4 ðkÞ ¼ k̂iσj þ k̂jσi − ðk̂ · σÞδij rank 2 tensor

TABLE II. Decomposition of the different types of interaction
into different pairing channels; see Eq. (12). n ¼ 0 denotes the
s-wave channel; n ¼ 1;…; 4 denotes the odd-parity channels
classified in Table I. an > 0 corresponds to attractive pairing
interaction.

Type of interaction a0 a1 a2 a3

Q1ðqÞQ1ðqÞ 1 1 −1 0
Qi

2ðqÞQi
2ð−qÞ 2 −4=3 1=2 −1=4

Qij
3 ðqÞQji

3 ð−qÞ 20=3 0 −5=3 −1=2

Type of interaction a0 a1 a2 a3 a4
~Q1ðqÞ ~Q1ðqÞ 1 1 −1 −1 0
~Q2ðqÞ ~Q2ð−qÞ 1 −1 1 −1 0
~Qi
3ðqÞ ~Qi

3ð−qÞ 1 −1=2 −1=2 1 −1=4
~Qij
4 ðqÞ ~Qji

4 ð−qÞ 4 0 0 −4 0
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Although fluctuations of multipolar orders in rotationally
invariant systems do not lead to pairing in any odd-parity
channel, the situation becomes different in real materials
where the crystal symmetry is taken into account. In any
crystals, the five components of rank 2 tensor Γ3 invariably
split into more than one representations of the point group.
For example, for Oh point group, the diagonal and off-
diagonal components of Γ3 split to form eg and t2g
representations, which have 2 and 3 independent compo-
nents respectively. For many point groups such as D4h, ~Γ4

also splits into one-dimensional representations, with form
factors kxσx − kyσy and kxσy þ kyσx respectively. We find
fluctuations of such multipolar orders of reduced symmetry
generate attractive pairing interaction in the odd-parity
channel of the same symmetry. The interaction strength is
weaker than the s-wave channel in the case of eg and t2g
orders, and is equal to the latter in the case of Ising type ~Γ4

orders [20].
The above finding of odd-parity pairing meditated by

parity fluctuations in spin-orbit-coupled systems is the
main result of this work. It is interesting to make a
comparison with the mechanism of triplet pairing meditated
by spin fluctuations. In that case, the effective interaction is
given by

P
qVðqÞsðqÞ · sð−qÞ, where s is the spin operator

and VðqÞ ¼ I=½1þ IχsðqÞ� is determined by the spin
susceptibility χsðqÞ. Importantly, to obtain the pairing
interaction in the triplet channel requires χsðqÞ to have a
nontrivial q dependence. Approximating χsðqÞ by its
zeroth spherical harmonic, which is a constant, does not
generate triplet pairing, simply because two electrons at the
same spatial location cannot form a triplet. In contrast, we
obtained odd-parity pairing in this leading-order approxi-
mation, without relying on any special features of the
susceptibility of parity-breaking order.
Given that the pairing interaction we found has compa-

rable or even identical strengths in the s-wave and odd-
parity channels, small residual interactions or external
perturbations become important in lifting the degeneracy
and eventually determine which one of the two competing
pairing symmetries is realized. An in-depth study of the
effects of residual interactions necessarily involve material-
specific details, which is beyond the scope of this work.
Nonetheless, it should be noted that the Coulomb repulsion
is maximal and has the strongest pair-breaking effect in the
s-wave channel: this fact can make the odd-parity pairing
energetically favorable. This role of Coulomb interaction in
the competition between s-wave and odd-parity pairings
has been recognized [3] and emphasized [27] in recent
model studies.
In addition to Coulomb interaction, the s-wave pairing is

suppressed by a magnetic field B that splits the spin
degeneracy, which is pair-breaking and sets the Pauli limit
for the upper critical field. However, Zeeman spin splitting
has variable effects on odd-parity superconducting states in
spin-orbit-coupled systems, as we show now. First, let us

consider how the doubly degenerate bands at everyk, or the
pseudospin, split under a Zeeman field. The coupling of
pseudospin to Zeeman field takes the general form

HZ ¼
X
k

c†kgijðkÞBiσjðkÞck: ð13Þ

The g-factor gijðkÞ is a function of k, and can be expanded
into different spherical harmonics over the Fermi surface.
Importantly, since the pseudospin operator σj is defined in
the manifestly covariant Bloch basis and has the same
symmetry as an electron’s spin, gijðkÞ generally has a
dominant zeroth spherical harmonic component g0ij.
Assuming gijðkÞ≃ g0ij, we obtain a uniform spin splitting
over the Fermi surface, with a spin quantization axis in the
direction of hi ¼ g0ijBi. The Pauli limit will be absent for
the odd-parity pairing if its d-vector dðkÞ is perpendicular
to h, for all k on the Fermi surface. For example, in 2D
systems with rotational symmetry, an in-plane field B
induces a spin splitting in the direction parallel to the
field. The odd-parity pairing with ~Γ3ðkÞ ¼ ðkxσz; kyσzÞ,
whose d-vector is out of plane, is not Pauli limited.
Therefore, Zeeman field is an effective way of tuning
the competition between different pairing symmetries and
promoting certain types of odd-parity superconductivity for
which the Pauli limit is absent or largely enhanced.
Finally, we propose candidate materials for odd-parity

superconductivity in the vicinity of parity-breaking order.
First, the pyrochlore oxide Cd2Re2O7 undergoes a con-
tinuous parity-breaking phase transition at Tp ¼ 200 K
[28,29] with a large mass enhancement of conduction
electrons [30], and becomes superconducting at Tc ¼
1.1 K [31]. The application of high pressure has significant
effects on these phases, and generates a variety of new
phases identified from resistivity anomalies. Remarkably,
around a critical pressure of Pc ¼ 4.2 GPa where the
parity-breaking order is suppressed, an anomalously large
upper critical field of 7.8 T is observed, which is 27 times
larger than at ambient pressure and significantly higher
than the Pauli limit 4.2 T evaluated as Hp ¼ 1.84Tc [32].
These phenomena seem to fit into the theoretical picture
presented in this work. Therefore, we propose that the
superconducting state of Cd2Re2O7 around Pc is driven by
parity fluctuations, and may have an odd-parity pairing
symmetry.
Another candidate system is inversion-symmetric heter-

ostructure of doped SrTiO3 with intrinsic spin-orbit cou-
pling [33]. Bulk SrTiO3 is close to the ferroelectric
instability and becomes superconducting upon electron
doping [34,35]. In doped SrTiO3 heterostructures with
the superconducting dopant layer of a few nanometers
thickness, the in-plane upper critical field exceeds the
conventional Pauli limit [33]. It is worthwhile to examine
the possibility of an odd-parity superconducting state under
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a large in-plane field, as we discussed earlier. A model
study for possible superconducting phases in SrTiO3

heterostructure will be presented elsewhere.
Throughout this work, we have stayed away from the

immediate neighborhood of the quantum phase transition
point, where long-wavelength and low-frequency fluctua-
tions of the parity-breaking order pile up and the RPA type
effective interaction used in this work is inapplicable. The
physics in the quantum critical regime is an interesting
topic which is left to future study.
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