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Measuring the ac magnetic response of a type II superconductor provides valuable information on the
pinning landscape (pinscape) of thematerial.We use strong pinning theory to derive amicroscopic expression
for theCampbell length λC, the penetration depth of the ac signal.We show that λC is determinedby the jump in
the pinning force, in contrast to the critical current jc, which involves the jump in pinning energy. We
demonstrate that the Campbell lengths generically differ for zero-field-cooled and field-cooled samples and
predict that hysteretic behavior can appear in the latter situation. We compare our findings with new
experimental data and show the potential of this technique in providing information on thematerial’s pinscape.
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Technologically useful superconductors are of second
type and acquire their desired transport andmagnetic proper-
ties through vortex pinning; i.e., vortices [1] get immobilized
by material defects. Understanding and characterizing the
underlying pinning landscape (or pinscape) is of great
importance but presents quite a formidable task, with
implications reaching beyond superconductivity, e.g., in
studies of disordered polymers [2] or magnetic domain walls
[3]. Measurements of dc transport properties, either dynami-
cally through the current–voltage characteristic [4] or stati-
cally through magnetization [5], are standard techniques to
gain information on the pinscape. Similarly, the ac magnetic
response of superconducting samples [6] provides insight
into the shape of pinning potentials. Unfortunately, the
relation between the measured penetration depth of the ac
signal, the so-called Campbell length λC, and the parameters
of the pinscape is only known on a phenomenological level.
In this Letter, we present a microscopic derivation of the
Campbell length within the framework of strong pinning
theory, thereby providing access to microscopic parameters
of pinning defects and substantially enlarging the scope of
applications of this measurement technique.
Probing superconductors via their ac magnetic response

goes back to the 1960s and culminated in Campbell’s work
[6], which provided the first consistent explanation of the
penetration phenomenon (see Ref. [7] for further develop-
ments): for small ac magnetic-field amplitudes hac and
frequencies ω, vortices oscillate reversibly within their
pinning potentials (described as harmonic wells αx2=2),
with the external signal hac penetrating the sample on a
distance λC ∝ B=

ffiffiffi
α

p
of order micrometers. Later work by

Lowell [8] and Campbell [9] provided a more quantitative
but still phenomenological understanding within a model
pinscape. Here, we make use of the strong pinning scenario
allowing us to perform a quantitative and microscopic
analysis of the ac magnetic response. In particular, we find
the dependence of the Campbell penetration depth λC on
the vortex state, e.g., the Bean critical [or zero-field-cooled

(ZFC)] state [5] state with a vortex density gradient
supporting the critical current density jc [10] or a field-
cooled (FC) state with a constant induction B, and predict
the occurrence of new hysteretic effects. The comparison
with recent experiments [11] confirms our predictions.
Consider a superconductor occupying the half-space

X > 0, the magnetic induction BðX; tÞ ¼ B0 þ δBðX; tÞ
directed along Z, and the screening current j flowing along
Y (capital and lower case letters distinguish between macro-
scopic andmicroscopic coordinates). The equation ofmotion
for the macroscopic vortex displacement UðX; tÞ reads

η∂tU ¼ FLðj; UÞ þ FpinðX;UÞ; ð1Þ

with the Lorentz force FL balanced by dissipative and
pinning forces (η denotes the viscosity [12]). The displace-
ment UðX; tÞ relates to the induction via δBðX; tÞ ¼
−B0∂XUðX; tÞ and is driven at the surface X ¼ 0 by the
small external field hac ≪ B0, δBð0; tÞ ¼ hace−iωt. The
Lorentz forceFL ¼ ðj0 þ δjÞB=c involves an ac component
δj ¼ −c∂XδB=4π, and writing the pinning force
Fpin ¼ F0 þ δFpin, with F0 the force density in the initial
vortex state balancing the dcLorentz force j0B0=c, we obtain
the dynamical equation

η∂tU − ðB2
0=4πÞ∂2

XU − δFpinðUÞ ¼ 0: ð2Þ
Following Ref. [6], one assumes small oscillations of the
vortices near the potential minima. This motivates the
phenomenological ansatz δFpinðUÞ ¼ −αU for the pinning
force density. Solving Eq. (2) for the displacement field,

UðX; tÞ ¼ λCðhac=B0Þe−X=λCe−iωt; ð3Þ

with λ2CðωÞ ¼ B2
0=4πðα − iωηÞ; ð4Þ

results in the Campbell length λC¼λCðω¼0Þ¼ðB2
0=4παÞ1=2

at low frequencies.
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Here, our goal is to derive an expression for δFpin
starting from a microscopic perspective. This can be done
within the framework of strong pinning theory, which goes
back to the works of Labusch [13] and Larkin and
Ovchinnikov [14], with recent further studies on the critical
currents in strong and weak pinning scenarios [15],
numerical simulations of vortex motion [16], and the
current–voltage characteristic [17]; note that the qualitative
framework of weak collective pinning theory [14] is not
sufficient to develop a quantitative understanding of λC.
Consider a representative vortex within the flux lattice

driven along x on a trajectory described through the
asymptotic coordinate r∞ ¼ ðx; bÞ at large jzj; the distance
b along y is the impact parameter with respect to a defect at
the origin. Within the strong pinning context, defects act
individually, generating a pinning potential epðr; zÞ.
Considering a trajectory with maximal pinning, i.e.,
b ¼ 0 and including the deformation energy of the vortex,
its total energy as a function of x takes the form (we assume
a pointlike defect with epðx; zÞ ¼ epðxÞδðzÞ, see Ref. [15])

epinðxÞ ¼
1

2
C̄uðxÞ2 þ ep½xþ uðxÞ�; ð5Þ

with uðxÞ the microscopic displacement field in the plane
z ¼ 0, see Fig. 1, and C̄ the effective elasticity of the vortex
embedded within the lattice,

C̄−1 ¼ 1

2

Z
d3k
ð2πÞ3

1

c66ðk2x þ k2yÞ þ c44ðkÞk2z
: ð6Þ

Here, c66 and c44ðkÞ denote shear and dispersive tilt moduli
and proper integration in Eq. (6) provides the result
C̄ ∼ ða20=λÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66c44ð0Þ

p
, with a−20 ¼ B0=Φ0 the vortex den-

sity (Φ0 ¼ hc=2e is the flux unit and λ the London
penetration depth). Minimization of Eq. (5) with respect
to u (at fixed x) generates the self-consistency condition,

C̄uðxÞ ¼ fp½xþ uðxÞ�; ð7Þ

for the displacement field uðxÞ, where fpðxÞ ¼ −e0pðxÞ is
the bare force profile of the pinning defect, the prime
denoting derivative with respect to x. The maximal slope in
fpðxÞ, realized at xm, defines the regime of strong pinning
[13]: for κ ≡ ½f0pðxmÞ�=C̄ > 1, the condition in Eq. (7)
generates two stable solutions for the displacement field
uðxÞ, a pinned and an unpinned branch; see Fig. 1. The
condition κ ¼ 1 is the famous Labusch criterion [13]
separating strong (κ > 1) from weak (κ < 1) pins.
Assuming a homogeneous random distribution of

defects with small density np (see below for a quantitative
criterion), the macroscopic pinning force density Fpin

derives from averaging the pinning forces fp½xþ uoðxÞ�
over all positions jxj < a0=2 within a lattice period, with
uo denoting the branch occupied with vortices. This

occupation depends on the state preparation, e.g., for a
Bean state with vortices driven along x, the occupation of
the pinned branch extends over the interval ½−x−; xþ�, see
Fig. 1, such as to produce the maximal force Fpin ¼ −Fc,

Fc ¼ −nphfpini ¼ −np t⊥a0
Z
a0

dx
a0

fpinðxÞjo; ð8Þ

where fpinðxÞ≡ fp½xþ uðxÞ� and jo refers to the occupied
branch uoðxÞ (we assume maximal pinning for all trajec-
tories with 2jbj < t⊥ ≃ ξ, ξ the coherence length). Making
use of Eqs. (5) and (7), we derive the relation fpinðxÞ ¼
−depinðxÞ=dx and arrive at a simple expression for the
critical current density jc ¼ ðc=B0ÞFc,

jc ¼
c
B0

np
t⊥
a20

Z
a0

dx½−depinðxÞ=dxjo� ¼
cnpt⊥
Φ0

Δepin; ð9Þ

where Δepin is the sum of jumps at −x− and xþ in epinðxÞ,
where the occupation changes between unoccupied and
occupied branches [13,14]; see Fig. 1.
Equipped with this microscopic understanding of pinned

vortex matter, we return to the problem of ac magnetic
response. Within strong pinning, we can follow the changes
in the occupation of pinned and unpinned branches as
vortices are driven by the ac-magnetic field and determine
the time-dependent and inhomogeneous change in the
pinning force δFpin½UðX; tÞ�. A macroscopic shift U > 0
pushes vortices in the critical direction of the Bean state;
vortices at −x− and xþ jump to pinned and unpinned
branches, respectively, leaving the (critical) branch occu-
pation unchanged and, hence, δFpinðU > 0Þ ¼ 0. On the
other hand, for a negative displacement U < 0, vortices

FIG. 1 (color online). Pinning energy epin and force fpin in a
strong pinning situation for a Lorentzian potential. The bistable
solutions near the defect describe pinned and unpinned branches.
Thick lines (blue) mark occupied branches in the Bean state,
dotted lines are unstable solutions, dashed lines are the jumps
making up for Δepin and Δfpin. Left: Strong pinning situation for
a representative vortex. The microscopic displacement uðxÞ ¼
fpinðxÞ=C̄ has the same shape as fpinðxÞ. Right: Change in branch
occupation when the vortex system moves by U.
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relax back in their pinning wells and the boundaries
between occupied and unoccupied states are shifted to
the left; see Fig. 1. This results in a change of the
macroscopic restoring force,

δFpinðU<0Þ¼np
t⊥
a20

Z
a0

dx½fpinðxÞjo;U−fpinðxÞjo;0�; ð10Þ

where the index jo;U refers to the occupation where vortices
have been shifted by U. Expanding the integrand for small
U, we arrive at the expression

δFpinðU < 0Þ ¼ np
t⊥
a20

Z
a0

dxdfpinðxÞ=dxjoU; ð11Þ

resulting in the strong pinning result for δFpin,

δFpinðUÞ ¼ −npðt⊥=a20ÞΔfpinΘð−UÞU; ð12Þ

with Δfpin the sum of jumps in the function fpin.
Inserting this result into Eq. (2) generates a complex

vortex dynamics as flux enters the sample in a sequence of
diffusive pulses until the field is raised to B0 þ hac; see [18]
for a detailed description of this initialization process. After
saturating the sample at this higher field level, the dis-
placement UðX; tÞ assumes the form

UðX; tÞ ¼ U0ðXÞ − λCðhac=B0Þe−X=λC ½1 − e−iωt�; ð13Þ

withU0ðXÞ ¼ ð−hacX þ ϕÞ=B0 generating the shift in field
B0 → B0ð1 − ∂XU0Þ ¼ B0 þ hac and ϕ denoting the total
flux (per unit length along Y) that has entered the sample
[19]. The second term accounts for the penetration of the
external field with respect to the new Bean state,
δBðX; tÞ ¼ hace−X=λCð1 − e−iωtÞ. The Campbell penetra-
tion depth can be expressed by the microscopic parameters,
the average curvature d2epinðxÞ=dx2, of the pinscape,

B2
0

4πλ2C
¼ −

npt⊥
a20

Z
a0

dxd2epinðxÞ=dx2jo ¼
npt⊥
a20

Δfpin: ð14Þ

Making use of the estimates Δfpin ∼ fp, t⊥ ∼ ξ, and
κ ∼ fp=ξC̄, we find that λ2C ∼ λ2=ðκnpa0ξ2Þ > λ2, with
κnpa0ξ2 ≪ 1 the small parameter defining the three-
dimensional strong pinning regime [15]. Comparing the
results for jc and λ−2C [Eqs. (9) and (14) withΔepin ∼ f2p=C̄],
we observe that these two quantities address different
properties of the pinscape, the jumps in pinning energy
and force, respectively. As a consequence, the simple scaling
jc ∼ cαξ=B0 ∼ ðc=4πÞξB0=λ2C previously conjectured on the
basis of the phenomenological result [Eq. (4)] turns out
incorrect and has to be replaced by jc ∼ ðc=4πÞκξB0=
λ2C ∝ ½Δfpin�2. Hence, care must be taken when translating
measured data on λC into predictions for jc [11].

Next, we turn to the field-cooled state with j0 ¼ 0 and
F0 ¼ 0. Following Eq. (14), the determination of the jumps
in the, now symmetric, occupation of fpin is the central task
in the calculation of λC. Assuming defects in the form of
metallic or insulating inclusions, one can show [20] that
pinning turns on smoothly upon crossing the Hc2ðTÞ line.
Hence, the vortex system changes from weak to strong
pinning upon decreasing the temperature T below the
Labusch temperature TL defined through κðTLÞ ¼
f0pðxmÞ=C̄jTL

¼ 1. At TL, the pinning force fpinðxÞ for
the first time develops an infinite slope at x0L,
½dfpin=dxjx0L �TL

¼ ∞. Lowering the temperature below
TL, the function fpinðxÞ develops two branches, pinned
and unpinned ones, which start and end at the boundaries
�xþ and �x− close to �x0L. In order to decide upon the
branch occupation below TL, we have to determine the
relative arrangement of the positions x0L and x�. We
distinguish three cases, of which (a) is the simplest one,
see Fig. 2(a), with x� moving away from x0L in different
directions. In this case, the branch occupation jumps
between pinned and unpinned at �x0L and a small ac field
produces a small reoccupation around these points; the
relevant jumps in fpin thus appear at �x0L, with Δfpin ¼
2Δfpinjx0L entering the expression for the field-cooled
Campbell length [Eq. (14)]. Case (b) shown in Fig. 2(b)
describes the situation where both branches grow beyond
x0L with decreasing temperature, x0L < x− < xþ. Then,
vortices between x0L and x− jump to the pinned branch and

(a)

(c)

(b)

FIG. 2 (color online). Evolution of the pinning force fpin
crossing over from weak to strong pinning. (a) The jump in the
occupation between pinned and unpinned branches first appears at
x0L and remains there if the branch edges at x� move away in
opposite directions with decreasing temperature, x− < x0L < xþ.
(b) If x0L < x− < xþ, the jump is pinned to x− and hysteretic
effects show up upon thermal cycling. (c) Pinscape fpinðxÞ at high
magnetic fields involving only pinned and unstable branches. The
relevant jumps are located at xþ for the zero-field-cooled sample
(left) and at a0=2 for the field-cooled situation (right).
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the relevant jump in the occupation is pinned to x−.
Accordingly, the jump in the pinning force entering λC
is given by 2Δfpinjx−. Finally, case (b0) involves a shrinking
of the branches with respect to x0L, i.e., x− < xþ < x0L,
and the jump in occupation is pinned to xþ,
Δfpin ¼ 2Δfpinjxþ . As a result, the Campbell length λC
may differ for the zero-field-cooled (Bean type) and field-
cooled vortex states in various respects, depending on the
case at hand.
Quantitative analytic results can be obtained at temper-

atures below but close to TL, where κ ≳ 1. Expanding the
bare pinning force fpðxÞ around xm (where f00p vanishes),
fpðxÞ ≈ fpðxmÞ þ f0pjxmðx − xmÞ − γðx − xmÞ3=3 with
2γ ¼ −f000p jxm > 0, we obtain the result

x� ¼ x0 �
2

3

ffiffiffiffi
C̄
γ

s
ðκ − 1Þ3=2; ð15Þ

with x0 ¼ xm − fpðxmÞ=C̄ > xm the generalization of x0L
to temperatures below TL, x0ðTLÞ ¼ x0L. The jumps at�x�
then are equal and smaller than the jumps at �x0L. For case
(a), this results in different (by ≈7%) Campbell lengths
λCjFC < λCjZFC, while for the cases (b) and (b0) the two
lengths are equal. For large κ ≫ 1, the three jumps are all
different, resulting in different Campbell lengths with
λCjFCþ < λCjZFC < λCjFC− , where � refer to the scenarios
involving the large/small jumps at x�.
Which of the above scenarios is realized in a specific

case depends on the temperature dependence of elastic and
pinning forces. Close to TL, the behavior of x� is
dominated by x0 ∼ x0L þ aτL, with τL ¼ 1 − T=TL and
the sign of the prefactor a deciding upon which case, (b) or
(b0), is realized. On the other hand, for larger τL, the second
term in Eq. (15), ∝ ðκ − 1Þ3=2 ∝ τ3=2L , becomes dominant
and case (a) is realized.
Furthermore, hysteretic behavior of λC appears in cases

(b) and (b0) when first cooling and subsequently reheating
the sample (from Tmin). Indeed, when both branches
increase or decrease below x0L upon cooling, the relevant
jump appears at the branch edge xclose that is closer to x0L.
On reheating, the jump first remains pinned to xcloseðTminÞ
until the other edge xfar farther away from x0L is hit,
whereupon the jump follows the position xfarðTÞ; see
Fig. 2(b). Otherwise, in case (a) or when xclose goes through
an extremum, no hysteresis appears upon thermal cycling
as long as the jump in fpin is realized [21] away from the
branch edges at �x�.
We now briefly discuss the situation at high fields

when the pinned branch extends beyond the vortex sepa-
ration a0, xþ > a0=2. Close to Hc2 , the bare pinning force
is well approximated by the lowest harmonic, fpðxÞ≈
f0 sinð2πx=a0Þ; the competition with elastic forces then
produces the multivalued function fpinðxÞ shown in
Fig. 2(c). In this situation, the branch edges at �x− have

vanished and only the pinned branches between �xþ
survive. For the Bean state, the jump in force (Δfpinjxþ)
determining λC is located at xþ. For the field-cooled state,
the (slightly larger) jump in force is located at a0=2 instead,
hence, λCjFC ≲ λCjZFC; no hysteresis is expected in this
regime. Upon decreasing the field, additional harmonics
become relevant in the description of fpðxÞ and its maximal
slope at xm moves away from a0=2, i.e., xm < a0=2. As x0L
also decreases below a0=2, an unpinned branch starts
developing and we cross over to the low-field domain
involving both the pinned and unpinned branches. Note
that neither of these regimes is small but rather occupy
similar size regions within the H-T phase diagram.
In Fig. 3 we compare our main new findings, the

dependence of λC on the vortex state and the appearance
of hysteretic effects, with measurements on a single crystal
superconductor SrPd2Ge2 (isostructural to the Fe and Ni
pnictides) using a tunnel-diode oscillator technique; see
Fig. 4(a) of Ref. [11] (shown are magnified traces at 0.02
and 0.3 T). A small ac excitation field hac ≈ 20 mOe is
superimposed on the dc field ensuring linearity of the
response; see Ref. [22] for experimental details. Theoretical
results for the Campbell lengths are found by solving
Eq. (7) and extracting the relevant jumps Δfpin, assuming a
pinning model based on insulating inclusions [20] (we use
standard Ginzburg-Landau scaling). All features, the
dependence of λC on the state preparation, the appearance
of hysteresis upon thermal cycling, as well as the reversal
from λCjZFC < λCjFC− at low fields to λCjFC < λCjZFC at
high fields, are visible in the experiment and captured by
the model; note that other pinning models based on metallic
inclusions or δTc, δl pinning [23] (l the mean free path)
produce different behavior.
In conclusion, making use of strong pinning theory, we

have presented amicroscopic and quantitative expression for
the Campbell length λC that captures specific properties of
the pinscape.Our theory predicts the dependence of λC on the
vortex state (FC versus ZFC) and explains the appearance of
hysteretic effects, with results that are in good agreement
with experiments. With the new information at hand, the
pinscape can be analyzed in much more detail via deliberate

FIG. 3 (color online). Experimental (left) and theoretical (right)
traces of the Campbell length λCðTÞ for zero-field-cooled (blue
curves) and (hysteretic) field-cooled (red curves) states at low
(main panels) and high (inset panels) magnetic fields.
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state preparation “in between" the field- and zero-field-
cooled extremes, thus opening up the new field of “pinscape
spectroscopy”.
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