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Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials
with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials
have yielded successes only within a limited exploration space. Here, we report the virtual screening of a
library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization
using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations
for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an
electronic band gap < 1 eV, which makes them exceptional candidates for thermoelectric applications. In
addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful
for many other applications in which the chemistry of materials is required to be optimized.
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Thermoelectric generators are essential for utilizing oth-
erwisewasted heat. Becauseof the technological importance,
researchers have been seeking materials with high conver-
sion efficiency for decades [1–4]. Compounds of low lattice
thermal conductivity (LTC) are essential for this purpose.
Low LTC is also required for thermal barrier coating
materials. Different strategies have been used to decrease
LTC. Recently, high throughput screening (HTS) of materi-
als using a materials database constructed by first-principles
calculations has been recognized as an efficient tool for
accelerated materials discovery [5–9]. Thanks to the recent
progress of computational power and techniques, a large set
of first-principles calculations can be performed with the
accuracy comparable to experiments. This is a straightfor-
ward strategy when both of the following conditions are
satisfied: (1) The target physical property can be accurately
computed by first-principles methods. (2) The exploration
space is well defined and not too large to compute the target
physical property exhaustively in the space.
In order to evaluate LTC with the accuracy comparable to

experimental data, however, we need to develop a method
that is far beyond the ordinary density functional theory
(DFT) calculations. Since we need to treat multiple inter-
actions among phonons, or anharmonic lattice dynamics, the
computational cost ismany orders ofmagnitudes higher than
the ordinary DFT calculations. Such expensive calculations
are practically possible only for a small number of simple
compounds. HTS of a large DFT database of LTC is not a

realistic approach unless the exploration space is narrowly
confined. Carrete and coworkers concentrated their efforts to
search low-LTC materials within half-Heusler compounds
[10]. They made HTS of a wide variety of half-Heusler
compounds through examination of thermodynamic stability
via DFT results. Then, LTCwas estimated either by full first-
principles calculations or by a machine-learning algorithm
for a selected small number of compounds. HTS of low LTC
using a quasiharmonic Debye model was also reported in
[11]. Efficient prediction of LTC through compressive
sensing of lattice dynamics was recently demonstrated
[12]. Development of such new methods would bring
accelerated discovery of new materials in the future.
In the present study, we do not want to restrict the

exploration space by empirical knowledge, for example, by
crystal structure. First, we evaluated the LTC of 101
compounds with three prototype structures, i.e., rocksalt,
zincblende, and wurtzite-type structures by first-principles
anharmonic lattice-dynamics calculations and solving
the Boltzmann transport equation with the single-mode
relaxation-time approximation [13,14]. Then, the results
are used to construct a model for making a “virtual
screening” of 54 779 compounds in a library with a
diversity of structures and chemical compositions employ-
ing a Bayesian optimization procedure. The highly ranked
compounds are supplied to first-principles LTC calcula-
tions to verify the result of the screening.
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The computational procedure of LTC is described in
detail elsewhere [13]. LTCs were calculated from phonon
lifetimes, group velocities, and mode-heat capacities solv-
ing the phonon Boltzmann transport equation within the
relaxation time approximation. The phonon properties were
calculated from the force constants. We employed first-
principles calculations to obtain second-order force con-
stants and third-order force constants with the supercell and
finite displacement approaches. PHONOPY code was used
for these phonon calculations [14].
For the first-principles calculations, we employed the

plane-wave basis projector augmented wave (PAW) method
[15] in the framework of DFT and the generalized gradient
approximation of the Perdew-Burke-Ernzerhof (PBE) form
[16] as implemented in the VASP code [17–19]. Much more
attention for the convergence of DFT calculations should be
paid in the phonon calculations as compared to the ordinary
first-principles calculationswith respect to the k-pointmesh,
plane wave energy cutoff and tolerances of energy, residual
force, and stress. The size of the supercell was chosen by
observing the convergence of phonon properties by chang-
ing the supercell size [20]. The planewave energy cutoffwas
chosen to be at least 20% higher than the recommended
values in the PAW dataset. Total energies were minimized
until the energy convergence became less than 10−8 eV.
Results of first-principles LTC of 101 compounds are

shown with crystalline volume per atom, V, and density, ρ,
in Figs. 1(a) and 1(b). Among 101 compounds, PbSe with
the rocksalt structure shows the lowest LTC, 0.9 W=mK (at
300 K). It is in the similar trend as the recent report showing
low LTC for lead- and tin-chalcogenides [21–24]. The
computed results are compared with available experimental
data in Fig. 1(c). Satisfactory agreements between exper-
imental and computed results are evident in Fig. 1(c),
demonstrating the usefulness of the first-principles LTC
data for further studies. A phenomenological relationship
has been proposed that log κL is proportional to logV [25].
Although qualitative correlation can be seen between our
LTC and V, it is difficult to predict LTC quantitatively,
hence, to discover new compounds with low LTC, only

from the phenomenological relationship. It can be noted
that the dependence on V is remarkably different between
rocksalt-type and zincblende- or wurtzite-type compounds,
while zincblende- and wurtzite-type compounds show
similar LTC when the chemical compositions are the same.
The 101 first-principles LTC data are then used to make a

model for the prediction of LTC of compounds within a
library on the basis of the Bayesian optimization. For the
purpose of the prediction, it is preferable to select “good”
predictors. Our rule of thumb is as follows: (1) Whenever
experts’ knowledge is available as a physical or phenom-
enological rule, it should be examined as the first step.
(2) Predictors may be better included in a library or those
easily made by combining the physical quantities in a
library. Alternatively, the predictors may be easily com-
puted by DFT calculations. (3) High efficiency for the
Bayesian optimization procedure needs to be examined.
On the basis of these ideas, we first determine predictors

used for the Bayesian optimization procedure by finding
the lowest LTC compound among the 101 first-principles
LTC data. We adopt the kriging method based on the
Gaussian process regression (GPR) [26,27] of LTC simply
using two physical quantities, V and ρ, as predictors. These
quantities are available in most of the experimental or
computational crystal structure database, such as ICSD
[28], Atomwork [29], Materials Project Database (MPD)
[30], and aflowlib [31]. Although a phenomenological
relationship has been proposed between log κL and V
[25], the correlation between them is not so high. The
correlation between log κL and ρ is even worse.
We start from an observed data set of five compounds

that are randomly chosen from 101 compounds. In the
kriging, a compound with a maximum probability of
improvement among the remaining data is searched,
namely, a compound with the highest Z score derived
from GPR. The compound is included into the observed
data set and then another compound with maximum
probability of improvement is searched. Both the kriging
and random searches are repeated fifty times, and the
average number of observed compounds required for
finding the compound with the lowest LTC is examined.
When− log κL is expressed as f, Z score for a compound

with predictors x� is defined as

Zðx�Þ ¼ ½fðx�Þ − fbest�=
ffiffiffiffiffiffiffiffiffiffiffi

vðx�Þ
p

; ð1Þ
wherefðx�Þ andvðx�Þ denote the predicted value of− log κL
and its prediction variance at a point expressed by predictors
x�, respectively.vðx�Þ is expected to be small for compounds
near the observed data, while it can be large for compounds
far from the observed data. fbest denotes the lowest LTC
value among “observed” compounds, which is updated at
each kriging step. The Z score that is evaluated by dividing
½fðx�Þ − fbest� by the square root of the prediction variance,
ffiffiffiffiffiffiffiffiffiffiffi

vðx�Þp

tends to select candidates with the maximum
probability of improvement [32]. Here, the prediction and
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FIG. 1 (color online). LTC calculated from first principles for
101 compounds along with (a) volume, V, and (b) density, ρ.
(c) Experimental LTC data are shown for comparison when
experimental LTCs are available.
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its variance are described using the Gaussian kernel func-
tion. Therefore, our GPR has two free parameters, i.e.,
variances of theGaussian kernel and prior distribution.Here,
they are given as 20 and 0.1, respectively.
Figure 2(a) shows the result of the kriging search in

comparison to the random search of the lowest LTC
compounds within the 101 compounds. The average num-
bers of compounds required for the optimization using the
kriging and random searches, Nav, are 11 and 55, respec-
tively. The compound with the lowest LTC among the 101
compounds, i.e., rocksalt PbSe, can be found much more
efficiently using the kriging technique and only with two
variables, V and ρ. However, we realize that using kriging
only with these two variables is not a robust way for finding
the lowest LTC. As an example, Fig. 2(b) shows the result of
the kriging search using the dataset after intentionally
removing the first and second lowest LTC compounds,
i.e., rocksalt PbSe and PbTe, from the 101 compounds.
Then, rocksalt LiI should be the right answer of the
optimization. However, Nav is 65 for finding LiI using
kriging only with V and ρ, which is larger than that of the
random search, Nav ¼ 50. The delay of the optimization
should originate from the fact that LiI is an outlier whenLTC
is modeled only with V and ρ. Such outlier compounds with
low LTC are difficult to find only with V and ρ.
In order to overcome the outlier problem, we add

predictors about constituent chemical elements. There
are many choices for such variables: They are, for example,
electronegativity, atomic radius, ionization energy, etc.
[27]. Here, we newly introduced “elemental descriptors,”
a set of binary digits representing the presence of chemical
elements. Since the 101 LTC data is composed of 34 kinds
of elements, we use 34 elemental descriptors. Results of the
kriging are shown in Figs. 2(a) and 2(b) with 34 elemental
descriptors on top of V and ρ. In both cases, the compound
of the lowest LTC is found with Nav ¼ 19. The use of the

elemental descriptors is found to improve the robustness of
the efficient search.
As described in the Supplemental Material (SM) [33],

better correlationswithLTCcan be found for parameters that
are obtained from the phonon density of states. However,
we do not use such phonon parameters as predictors in the
present study because there is no data library available for
such phonon parameters for a wide range of compounds.
Hereafter, we show results only with the predictor set
composed of 34 elemental descriptors on top of V and ρ.
Screening for low LTC compounds over compounds in a

large library is carried out using a GPR prediction model.
Such a screening based on a prediction model is called a
“virtual screening” in biomedical communities [34]. For
the virtual screening, we adopt all 54 779 compounds in the
MPD library [30,35], which is composed mostly of crystal
structure data available in ICSD [28]. This means that most
of them have been synthesized experimentally at least once.
On the basis of the GPR prediction model made by V, ρ and
34 elemental descriptors for the 101 LTC data, a ranking for
low-LTC compounds is made according to the Z score of
the 54 779 compounds.
Figure 3 shows the distribution of Z scores for the 54 779

compounds along with V and ρ. The magnitude of the Z
score is plotted in panels corresponding to constituent
elements. (Transition metal and other elements are shown
in the SM [33]). The Z score is relative to rocksalt PbSe,
showing the lowest LTC among the 101 compounds.
Among the 54 779 compounds, 221 compounds, which
are expected to have lower LTC than that of rocksalt PbSe,
i.e., < 0.9 W=mK (at 300 K), show a positive Z score.
They are highlighted by red dots. They are widely distrib-
uted in V-ρ space; which means it is difficult to pick them
up without performing the Bayesian optimization with
elemental descriptors. The Z score is widely distributed for
light elements such as Li, N, O, and F. This implies that the
presence of such light elements by itself has little effect on
lowering the LTC. When such light elements form a
compound with heavy elements, the compound tends to
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show a high Z score. It is also noteworthy that many
compounds composed of some light elements, such as Be
and B, tend to show high LTC.
Special features are recognized for Pb, Cs, I, Br, and Cl.

Many compounds composed of these elements exhibit high
Z scores. (The number of compounds with positive Z
scores is shown in the SM [33]). Most compounds showing
a positive Z score have any of the atomic combinations of
these five elements. On the other hand, elements in the
Periodic table neighboring these five elements do not show
analogous trends. For example, compounds with high Z
scores are rarely found for Tl and Bi, which are neighboring
to Pb. This may sound odd since Bi2Te3 is a famous
thermoelectric compound, and it is known that some
compounds containing Tl have low LTC. This may be
ascribed to our selection of the training dataset composed
only of AB compounds with 34 elements and three kinds of
simple crystal structures. In other words, the training
dataset is somehow “biased.” This is unavoidable at the
moment since the first-principles LTC calculations are still
too expensive to obtain a sufficiently unbiased training
dataset with a large enough number of data to cover the
diversity of chemical composition and crystal structures.
Nevertheless, the biased training dataset will be verified to
be useful for finding low-LTC materials. Because of the use
of the biased training dataset, we may not be able to
discover all of the low-LTC materials in the library.
However, we can discover at least a part of them.
A ranking of LTC made from the Z score does not

necessarily correspond to the true first-principles ranking.
Therefore, the verification process for the candidates of the
low-LTC compounds after the virtual screening is one of
the most important steps in “discovering” low-LTC com-
pounds. First principles LTCs are evaluated for the top eight
compounds after the virtual screening. All of them are
considered to form ordered structures. LTC calculation was
unsuccessful for Pb2RbBr5 due to the presence of imagi-
nary phonon modes within the supercell used in the present
study. Z scores and first-principles LTC of the rest of the
compounds are listed in Table I. All of the top five
compounds show a LTC of < 0.2 W=mK (at 300 K),
which is much lower than that of the rocksalt PbSe, i.e.,
0.9 W=mK (at 300 K). This confirms the powerfulness of
the present GPR prediction model for efficiently discov-
ering low-LTC compounds. Crystal structures of highly
ranked compounds, PbRbI3, PbIBr, PbRb4Br6, and PbI2
(P63mc) are shown in the SM [33]. PbICl and PbClBr have
the same crystal structures as PbIBr. PbI2 (R3̄m) and PbI2
(P63mc) are different only in their stacking sequences. All
of these compounds contain either sixfold or eightfold
coordinated Pb by halogen ions, and are of stoichiometric
chemical composition when Pb is divalent.
When such LTC materials are considered for thermo-

electric applications, properties related to electronic struc-
tures, namely the electronic contribution of thermal

conductivity, electrical conductivity, and the Seebeck
coefficient, should also be optimized. Although they can
be tuned by elemental doping, the band gap, Eg, should be a
simple measure of the electronic structure and allows us to
discriminate in a simple way between materials that can be
good thermoelectrics or not. All of the 221 compounds
showing a positive Z score are listed in the SM [33]
together with Eg (DFT-PBE) given in the MPD library.
Among them, only 19 compounds satisfy 0.1 <
Eg < 1.0 eV. First-principles LTCs are evaluated for them.
Crystal structures and LTC for two of them are shown in
Fig. 4 and Table I. Both K2CdPb and Cs2½PdCl4�I2 are
predicted to exhibit LTC of less than 0.5 W=mK (at 300 K)
together with a band gap of smaller than 1 eV. The
discovery of such compounds may open a gate toward
designing new thermoelectric materials with an exception-
ally high figure of merit.
In this Letter, we first report the theoretical LTC of 101

compounds by first-principles anharmonic lattice-dynamics
calculations. Using these data, the virtual screening of a
library containing 54 779 compounds is performed by
Bayesian optimization using the kriging method based
on the Gaussian process regressions. 221 materials with
very low LTC are found from this screening. A final
filtering of those low-LTC compounds is made using the
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K
Cd Pb

(b)(a)

Cs2[PdCl4]I2K2CdPb

FIG. 4 (color online). Crystal structures of K2CdPb and
Cs2½PdCl4�I2 predicted to show the low LTC of < 0.5 W=mK
(at 300 K) and narrow band gap of < 1 eV.

TABLE I. First principles LTCs and Z scores for highly ranked
compounds by the virtual screening. Band gaps by DFT-PBE are
taken from MPD library [30,35]. The other electronic properties
are shown in the SM [33].

Ranking
Z

score Formula
Space
group

LTC
(W=mK)

Band
gap (eV)

1 1.90 PbRbI3 Pnma 0.10 2.46
2 1.76 PbIBr Pnma 0.13 2.56
3 1.56 PbRb4Br6 R3̄c 0.08 3.90
4 1.56 PbICl Pnma 0.18 2.72
5 1.56 PbClBr Pnma 0.09 3.44
7 1.44 PbI2 R3̄m 0.29 2.42
8 1.43 PbI2 P63mc 0.29 2.45
121 0.39 K2CdPb Ama2 0.45 0.18
144 0.29 Cs2½PdCl4�I2 I4=mmm 0.31 0.88
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electronic band gap, which is a measure for discriminating,
in a simple way, between materials that can be good
thermoelectrics or not. Two compounds with the low
LTC of < 0.5 W=mK (at 300 K) and narrow band gap
of < 1 eV are, thus, discovered, which may open a gate
toward designing new thermoelectric materials with an
exceptionally high figure of merit. The present method
should be useful for searching for materials for many
different applications in which the chemistry of materials is
required to be optimized.
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