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We explore prethermal Floquet steady states and instabilities of the weakly interacting two-dimensional
Bose-Hubbard model subject to periodic driving. We develop a description of the nonequilibrium
dynamics, at arbitrary drive strength and frequency, using a weak-coupling conserving approximation.
We establish the regimes in which conventional (zero-momentum) and unconventional [ðπ; πÞ-momentum]
condensates are stable on intermediate time scales. We find that condensate stability is enhanced by
increasing the drive strength, because this decreases the bandwidth of quasiparticle excitations and thus
impedes resonant absorption and heating. Our results are directly relevant to a number of current
experiments with ultracold bosons.
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Periodically driven systems [1–4] often exhibit exotic
phenomena that are absent in their nondriven counterparts
[5–7]. Classic examples include the Kapitza pendulum and the
periodically kicked rotor. Recently, periodically modulating
optical lattices has attracted interest as a way of controlling
hopping processes [8–14] in order to engineer gauge fields
[15–22], topological band structures [23–29], and associated
exotic states of matter. Such exotic states are known to exist in
noninteracting systems and in certain mean-field models; the
extent to which they survive in the presence of interactions
is a central open question. It is believed, from the eigenstate
thermalization hypothesis [30–32], that driven interacting
systems will generically heat up to infinite temperature at
sufficiently late times [33–40]. Nevertheless, in some param-
eter regimes these heating times will be parametrically slower
than the system’s characteristic time scales. In that case, the
system will rapidly approach a “prethermalized” Floquet
steady state [39,41–43], which governs the dynamics until
the much later heating time scales.
In the present Letter, we study these prethermal states in

the weakly interacting, two-dimensional, periodically driven
Bose-Hubbard model (BHM). The regime we explore is
directly relevant to experiments [10,11,14,17–19,21,22,26],
in which weak interactions are present. We employ a
self-consistent weak-coupling conserving approximation
(WCCA) which treats the coupled nonlinear dynamics of
the condensate and the quasiparticle spectrum while neglect-
ing collisions between quasiparticles. This approximation is
justified at weak coupling since nonlinearities are important
at much shorter times than the collisional time scales.
Within the WCCA, we find a phase diagram (Fig. 1)

featuring at low drive frequency a regime in which the
superfluid state is already unstable within Bogoliubov
theory, owing to the resonant creation of quasiparticle

pairs, and a regime (at high drive frequency) where the
superfluid is stable. In the WCCA, there is a sharp phase
transition between these; when effects beyond weak cou-
pling are included, there will be a qualitative difference in
heating rates. Thus, in the “stable” regions of Fig. 1, the
system initially reaches a prethermalized superfluid state—
featuring a nonequilibrium quasiparticle distribution—and
then eventually heats up. For strong driving, the prether-
malized superfluid state is exotic, involving condensation at

(a)

(b)
(c)

FIG. 1 (color online). Stability diagram of the driven BHM for
U=J0 ¼ 0.2. In the pink regions the condensate is unstable as the
drive parametrically excites pairs of quasiparticles. In contrast, in
the blue regions the condensate is stable on intermediate time
scales. In the grey shaded region around ζ ≈ 2.405 the system is
strongly correlated (see text). The symbols represent numerical
WCCA results; the boundaries are given by the analytical
expression Eq. (5). Points marked (a), (b), (c) correspond to
the panels in Fig. 3.
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momentum π ¼ ðπ; πÞ. The existence of this exotic phase
in the high-frequency limit has previously been established
[8,9,11]; we find that it persists for intermediate frequencies
as well.
Remarkably, we find that the stable phase is enhanced

for intermediate drive strengths, since the drive both creates
quasiparticle pairs when this is a resonant process and
decreases the effective hopping rate (and, thus, the effective
bandwidth of quasiparticle excitations). A key conclusion of
our Letter is that, for weak interactions but general drive
amplitude and frequency, the condensate becomes unstable
when the drive frequency is parametrically resonant with
the drive-renormalized time-averaged bandwidth. Therefore,
parametric resonance occurs at lower frequencies when the
drive strength is ramped up.
Model.—We consider the Bose-Hubbard model on a

square lattice in the presence of a circularly polarized time-
periodic force EðtÞ ¼ AðcosΩt; sinΩtÞT ,

HlabðtÞ ¼ −J0
X

hiji
b†i bj þ

X

j

�
U
2
njðnj − 1Þ þ EðtÞ · rjnj

�
:

ð1Þ

The operator b†j creates a boson on lattice site rj. The
tunneling and interaction strength are denoted by J0 and U,
respectively. To achieve nontrivial dynamics in the high-
frequency regime, we scale the driving amplitude linearly
with the driving frequency A ∼Ω [6]; we define ζ≡ A=Ω.
We transform this Hamiltonian into a rotating frame
(cf. Supplemental Material [44]), giving

HðtÞ ¼ −J0
X

hiji
eiAðtÞ·ðri−rjÞb†i bj þ

U
2

X

j

njðnj − 1Þ: ð2Þ

Thus, in the rotating frame, the system experiences an
effective time-dependent gauge potential AðtÞ¼ ζðsinΩt;
−cosΩtÞT . The time evolution of Uð1Þ-invariant quantities
(and thus the stability) remains the same in both frames [49].
Method.—To study the driven system at arbitrary

frequencies, we employ a self-consistent WCCA. The
WCCA involves deriving equations of motion from a
two-particle irreducible effective action [50] within the
nonequilibrium Schwinger-Keldysh formalism [51,52],
keeping only diagrams to first order in U (see [44]).
Unlike simple perturbation theory or Bogoliubov theory,
the WCCA respects unitarity and conservation laws [53],
and thus gives physically sensible results for all times; in
particular, it allows the exponential growth of unstable
modes to be cut off by the resulting depletion of the
condensate. While the WCCA is not guaranteed to yield a
gapless excitation spectrum [53,54], the low-frequency
behavior of the spectrum is irrelevant for the phenomena
discussed here. Our approach is equivalent to a fully
self-consistent, time-dependent Hartree-Fock-Bogoliubov

approximation [54,55]; our formulation, however, can more
readily be extended to higher orders in U.
The WCCA equations of motion [44] were solved

numerically. For the results presented here, we prepared
the system on a Ns ¼ 100 × 100 lattice in the ground state
of Bogoliubov theory. We allow for a macroscopic pop-
ulation of the k ¼ π mode to allow for a condensate at
momentum π. To study the nonequilibrium dynamics, we
abruptly turn on the periodic drive and propagate the initial
state for 801 driving cycles using Eqs. (15) and (16) of [44].
We checked that the results are insensitive to system size.
Stability diagram.—The stability phase diagram is

shown in Fig. 1. Previous work has investigated the driven
Bose-Hubbard model [56–63] and related models [64–72]
using various approximation schemes; we go beyond these
works by treating both the condensate and quasiparticle
sectors, including the feedback between them. Thus, we are
able to explore instabilities originating in either sector on
equal footing.
We first discuss two analytically tractable limits, corre-

sponding to high-frequency driving (i.e., going along the x
axis of Fig. 1) and to low-amplitude driving (i.e., going along
the y axis). In the first case, the dynamics is approximately
governed by an effective time-average Hamiltonian [5,6],

Have ¼ −JaveðζÞ
X

hiji
b†i bj þ

U
2

X

j

njðnj − 1Þ: ð3Þ

The periodic modulation renormalizes the hopping to
JaveðζÞ ¼ J0J 0ðζÞ, where J 0ðζÞ is the zeroth-order
Bessel function of the first kind, which is a damped
oscillatory function with the first zero at ζ ≈ 2.4, the second
at ζ ≈ 5.5, etc. Thus, as ζ is increased, the time-averaged
hopping decreases, until the dispersion flattens at ζ ≈ 2.4.
For ζ > 2.4 the dispersion flips sign, and acquires a stable
minimum atπ ¼ ðπ; πÞ. Thus, in the high-frequency limit the
condensate at 0 ¼ ð0; 0Þ is stable when ζ < 2.4, whereas the
condensate at π is stable when 2.4≲ ζ ≲ 5.5. Moreover, for
commensurate filling, the superfluid phase should transition
into aMott insulating state around ζ ¼ 2.4 determined by the
phase boundary JaveðζÞ=U ≲ 0.06 [73,74]. This transition
regime, marked by the thin vertical strip in Fig. 1, is beyond
the validity of the WCCA; our WCCA simulations in this
regime give oscillatory behavior, see [44].
A second analytically tractable limit is that of weak

driving, at arbitraryΩ. The dominant effects can be inferred
from linear stability analysis around the nondriven state. In
terms of Bogoliubov quasiparticle operators γk, the system-
drive coupling includes terms of the form eiΩtγ†kγ

†
−k,

involving the emission of pairs of quasiparticles from
the condensate. The emission rate is related to the density
of states of two-quasiparticle excitations at Ω. Specifically,
if the nondriven system has quasiparticle excitations at
energy Ek; E−k such that Ω ¼ Ek þ E−k, absorption will
occur and the system will be unstable. On the other hand,
if Ω ≥ 2W, where W ≈ 2zJ0 is the approximate bandwidth
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of Bogoliubov excitations, then absorption does not occur
and the system is stable.
Combining the insights from these two limits allows us

to understand the entire stability phase diagram. The drive
creates pairs of renormalized Bogoliubov quasiparticles,
which have an effective bandwidth Wave ≈ 2zJaveðζÞ. We
define Wave ≡maxk½EaveðkÞ� −mink½EaveðkÞ� as the time-
averaged Floquet-Bogoliubov bandwidth; in terms of this,
the stability condition reads

Ωc > 2Wave ⇔ stable: ð4Þ
Equation (4) is consistent with our numerical results
(Fig. 1). This result is unexpected—since the time-averaged
Hamiltonian is valid at infinite frequency, whereas para-
metric resonance is a low-frequency phenomenon—but
can be understood as follows. The hopping matrix element
in the driven system can be expanded as JðtÞ ∼ J0

P
n

J nðζÞ expðinΩtÞ. We absorb the time-independent n ¼ 0
component in the unperturbed Hamiltonian, and treat
the n ¼ 1 term, which oscillates at Ω, perturbatively.
The perturbation is small for U ≪ Ω, because the matrix
element for creating two quasiparticles is proportional to
both J 1ðζÞ (which need not be small) and U (which is
assumed to be small). We then use parametric instability
analysis [44] with the renormalized dispersion, and con-
clude that an instability occurs when Ω ¼ 2Wave. When
Ω=J0 ≫ 1, the critical driving frequency is given by

ΩcðζÞ ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zJaveðζÞ½zJaveðζÞ þ n0U�

p
: ð5Þ

Note that in the present case, resonant absorption occurs for
drive strengths up to twice the single-particle bandwidth; by
contrast, in noninteracting systems, no absorption occurs
for Ω > Wave. The presence of absorption at frequencies
exceeding the single-particle bandwidth is generic in
interacting systems.
Condensate evolution.—Figure 2(a) shows the evolution

of the condensate fraction in various regimes: in the para-
metrically unstable regime (solid blue line), the condensate
slowly decays; in the stable regime (dashed red line), it
saturates to a prethermalized value, which is generally lower
than the Bogoliubov value [since jJaveðζÞj < jJ0j]. The
system enters a steady state with constant in time evolution
when measured stroboscopically. When the initial conden-
sate is at the band maximum (dash-dotted black line), the
condensate decays rapidly. Figure 2(b) shows the decay rate
as a function of drive amplitude in the parametrically
unstable regime; note that the decay rate depends not only
on drive strength ζ, but also on U and Ω. Very close to the
region ζ ∼ 2.405 (grey strip in Fig. 1), the WCCA gives
strong oscillations of the particle density between the
condensates at 0 and π (see [44]); however, as previously
noted, the WCCA is not reliable here.
A natural further observable is the total energy of the

system, which grows in the unstable phases and saturates in
the stable phases (see [44]).

(Quasi)momentum distribution.—Figure 3 plots snap-
shots of the quasimomentum (i.e., lattice momentum) dis-
tribution; the time evolution of this quantity is shown in [44].
Specifically, the quantity plotted is nk ¼ hb†kbki − n0δk;0;
i.e., the condensate peak is subtracted. The quasimomentum
distribution can be directly accessed through band mapping
followed by time-of-flight imaging. Moreover, as we are
concerned with a single-band model, one can extract this
distributiondirectly from time-of-flight imaging, by focusing
on momenta within the first Brillouin zone.
Figure 3(a) shows the parametrically unstable case,

where quasiparticles are strongly excited around the
quasimomentum surface fk∶Ω ¼ 2EaveðkÞg matching the
resonance condition. Within Bogoliubov theory, the (time-
averaged) excitation intensity should be uniform along this
surface. However, as the points along this surface are not
symmetry related, the nonlinearities included in the WCCA
favor some points on the excitation surface, as seen in the
intensity pattern in Fig. 3(a).
Figure 3(b) shows the stable case. Here, by contrast with

Fig. 3(a), the quasiparticle population remains low through-
out the Brillouin zone. As expected from Bogoliubov
theory, bosonic modes satisfying JaveðkÞ≲ U should have
appreciable occupation in the steady state; this region
expands as the dispersion flattens. The intricate patterns

(a)

(b)

FIG. 2 (color online). (a) Time evolution of the condensate
fraction for 801 driving cycles, starting from a Bogoliubov initial
state localized at k ¼ 0 for U=J0 ¼ 0.2. (b) Decay rate to 75% of
the condensate curves for Ω=J0 ¼ 12 (boldface points in Fig. 1).
Error bars are set by the difference of the inverse times,
determined by the first and last time the curve passes through
3=4, taking into account the oscillatory behavior.
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in momentum space are due to the abrupt turn-on of the
drive—which initializes the Floquet-Bogoliubov quasipar-
ticle states out of equilibrium—and are absent when the
drive is instead gradually ramped up. These patterns evolve
nontrivially with time (see [44]).
Finally, Fig. 3(c) illustrates the case in which the initial

state is a condensate at k ¼ 0, but the dispersion is inverted
(ζ > 2.4) so that the only stable condensate is supported at
k ¼ π. Thus the initial state is unstable regardless ofΩ. Let
us consider the infinite-frequency limit, which amounts to a
sudden quench of the single-particle dispersion. Computing
the Bogoliubov spectrum around a condensate at k ¼ 0 in
an inverted dispersion, we find that modes with momenta
near k ¼ 0 acquire imaginary frequencies (and thus
grow exponentially), whereas modes with large momenta
are stable [75]. The unstable modes are determined by
the condition εaveðkÞ þ zJ0 < 2n0U, where εaveðkÞ is the
single-particle Floquet dispersion (3). These modes are
dynamically stabilized due to the nonlinear feedback of the
self-consistent treatment [52]. Our numerical results with
the WCCA confirm this picture: the unstable modes at
small quasimomenta acquire large populations, whereas
the large-quasimomentum modes do not. This behavior is
specific to the WCCA; in a real system it will correspond to
intermediate-time dynamics t≲ J0=U2. On longer times,
collisions between quasiparticles should cause large occu-
pation numbers across the Brillouin zone, see [44].
Discussion.—We briefly outline the validity of the

WCCA in the three regimes of interest (for details see
[44]). In the parametrically unstable regime, the stability
analysis suggests that unstable modes grow at the rate
Γ ∼Un0J0J 1ðζÞ=Wave, while the momentum arcs in
Fig. 2(a) decay at a golden rule rate ∼U2n0nk=Wave.
Hence, as long as Unk < J0J 1ðζÞ, the formation rate is
greater than the decay rate and the WCCA is reliable. In the
stable region, the condensate fraction n0 remains large,
and the WCCA remains valid until very late times, when
resonant absorption involving m ¼ Ω=Wave quasiparticles

becomes dominant. For largeΩ, this is a very high-order and,
therefore, very slow process. Finally, in the dynamically
unstable phase, the WCCA physics is valid up to times
Wave=U2 (the collisional time scale). Thus, at weak coupling,
there is a parametrically largewindowbetween1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JaveðζÞU

p

and Wave=U2 where the WCCA description is correct.
The main experimental prediction of this Letter—a

parametric change in heating rates as a function of drive
amplitude and frequency—can be measured in present-day
experiments, which are naturally in the weak-coupling
regime. For the experiment in Ref. [26] the parameters
were chosen as U=J0 ≈ 0.1, Ω=J0 ≈ 20, and ζ ≈ 0.6, which
is within the regime we considered. For realistic experi-
ments in optical lattices, the presence of higher bands can
lead to instability even at high drive frequencies Ω. In this
case there are three regimes: (i) if Ω is less than twice the
renormalized bandwidthWave of the lower band, the system
is parametrically unstable as discussed above; (ii) if Ω is
larger than 2Wave, smaller than the band gap to the upper
band, and furthermore chosen such that any n-photon
resonances to higher bands [76] are suppressed, then the
system is stable within WCCA; (iii) if Ω exceeds the band
gap, the drive can mediate interband transitions, leading to
instability again. For a square optical lattice with typical
lattice potential V latt ¼ 10Erecoil, Erecoil ¼ h × 4 kHz, the
bandwidth of the lowest band is W0 ¼ 4J0 ¼ h × 0.3 kHz
[the time-averaged bandwidth Wave is reduced by a factor
of J 0ðζÞ], and the gap to the second Bloch band
is Δ ¼ 4.57Erecoil ¼ h × 18.28 kHz.
Although we focused on a square lattice, the arguments

generalize to other lattices, such as the honeycomb lattice,
in which topologically nontrivial states exist. Note that
topological gaps in mechanically shaken optical lattices
scale as Ω−1 [23–25]. Hence, in order to engineer topologi-
cal insulators with large gaps (and a large region of nonzero
Berry curvature around them), it is desirable to go to lower
frequencies. Our results impose a fundamental limit for
weakly interacting bosonic systems on how small the

(a) (b) (c)

FIG. 3 (color online). Snapshot of the momentum distribution nk ¼ hb†kbki − n0δk;0 after 801 driving cycles starting from a Bogoliubov
initial state localized at k ¼ 0 for U=J0 ¼ 0.2. Panel (a) is in the unstable regime where the condensate is depleted due to parametric
resonance. The bosons are excited by the drive to the quasienergy surface Ω ¼ 2EaveðkÞ (bright yellow-white circle around k ¼ π) where
they occupy sharp peaks (white pixels). Panel (b) is in the regime where the condensate is stable on the prethermal time scales. In panel (c),
the system is dynamically unstable due to the dispersion being inverted. The bright disc of excitations around k ¼ 0 corresponds to
dynamically unstable modes. The parameters are (a) Ω=J0 ¼ 10, ζ ¼ 0.8, (b) Ω=J0 ¼ 18, ζ ¼ 2.2, and (c) Ω=J0 ¼ 20, ζ ¼ 3.8.
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frequency can be, since for Ω < 2Wave the system becomes
unstable. More generally, our results suggest that conserving
approximations, whether controlled by weak coupling or
some other parameter as in large-N models [52,77–80], are
ways of exploring dynamical phase transitions in models that
are both interacting (unlike free-particle models) and finite-
dimensional (unlike the Kapitza pendulum). The critical
properties of such transitions are a fruitful theme for future
work. Although in practice such phase transitions will be
smeared out by higher-order effects, the associated cross-
overs should still be experimentally observable.
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presented within Bogoliubov theory. The time-dependence
of the total energy is shown in the parametrically unstable,
the stable and the dynamically unstable regimes. Finally, we
also discuss the time dependence of the momentum dis-
tribution function, and provide three videos to illustrate it.
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