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The existence of a structural resonance stop band caused by space charge in high-current beams, where
the resonance frequency is associated with 90° phase advance per focusing period, is well known and
alternatively referred to in the literature as envelope instability or as fourth-order resonance. We show,
however, that this stop band is actually a coincidence of a structural fourth-order resonance and the much
stronger envelope instability as competing mechanisms—depending on the time scale and initial matching.
A similar complexity of behavior—dependent on the distribution function—is also found between a third-
order instability and a sixth-order resonance in a 60° stop band. We claim that these findings are a generic
property of high-intensity beams in periodic focusing; they also allow a reinterpretation of the 90° linear
accelerator stop band previously observed experimentally at the UNILAC accelerator.
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Progress in control of space-charge effects in circular or
linear (linac) high-intensity accelerators warrants careful
consideration of intrinsic resonant space-charge effects,
where space charge itself—combined with linear periodic
focusing—is the driving force. Applications are proton
drivers for spallation or transmutation facilities or proton or
heavy ion injectors for fundamental research.
Frequently cited examples are the envelope instability

and the fourth-order resonance in periodic focusing, which
are both associated with the “quarter integer” frequency
stop band—in linac notation called the “90° phase
advance” stop band—where four lattice periods are needed
to complete one single-particle oscillation. All physics is
described in terms of these phase advances per cell (in
degrees per lattice period) without and with space charge,
e.g., k0x;y;z and kx;y;z, as normalized frequencies. The kx;y;z
are understood as uniform beam equivalent values and
decreasing with increasing space charge.
The modes discussed here have been introduced in a 2D

self-consistent perturbation model of Vlasov’s equation for a
Kapchinskij-Vladimirskij (KV) distribution in periodic
focusing [1]. The first experimental study for coasting beams
in a periodic channel with 87 quadrupoles by Tiefenback [2]
confirmed noticeable beam degradation for k0x;y > 90°.
There was evidence for a strong envelope instability, but
also for a fourth-order resonance; however, discrepancies
with theoretical envelope modeling were large, and an
explanation of the difficult measurements remained open.
Subsequently, work on the envelope mode remained

theoretical, for example, in Refs. [3–5]. A first experimen-
tal test in a linac environment was carried out at the GSI
UNILAC high-intensity heavy ion linac [6] in 2009 to
clarify whether an envelope instability or a fourth-order
resonance driven by space charge dominates as was
suggested in Ref. [7]. The experiment, indeed, gave

evidence of a fourth-order resonance and not of an envelope
instability. However, our findings show that the matter is
more complex and warrants revision of the 90° and other
relevant stop bands to achieve conceptual clarity on the
interplay of the commonly considered single-particle
resonances (see, for example, Ref. [8]) driven by space-
charge “pseudomultipoles” with the less known resonant
space-charge instabilities.
In uniform density KV beams in a linear periodic lattice,

a degradation of emittances can occur only by such
resonant instabilities, where the pseudomultipoles grow
exponentially from initial noise and lead to emittance
growth [1]. Examples studied here are the envelope as
well as the third-order instability (60° stop band). It is
essential that they equally occur in the non-KV examples,
where they cannot be explained by single-particle reso-
nance theory, as their driving terms are absent in matched
beams. The fourth- and sixth-order resonances of the 90°
and 60°, respectively, stop bands in our simulations,
instead, can be in principle regarded as single-particle
resonance phenomena, yet with the modification that the
space-charge pseudomultipoles are not fixed but self-
consistently varying along with the resonance. A fictitious
transition from a non-KV to KV beam would transform
these resonances into resonant instabilities.
We use the TRACEWIN code [9] and a periodic symmetric

focusing-drift-defocusing-drift array of quadrupoles.
Longitudinal focusing is by thin rf kicks with k0z chosen
as small as 60° to avoid coupling with the x − y motion (kz
typically half of this). Normalized rms emittances are used
throughout. They are assumed to be equal initially, which
results in bunches slightly elongated from spherical. Note
that in the short bunches of linacs the synchrotron period is
not very different from betatron periods; in circular accel-
erators, similar phenomena may occur but modified by
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different mixing effects due to the much longer synchrotron
periods.
We first employ the (3d) KV-envelope equation option of

TRACEWIN thus excluding all effects higher than second
order. The envelope instability grows exponentially from
infinitesimal mismatch up to saturation by nonlinear space-
charge detuning. The full response for k0x;y ¼ 100° and
variable kx;y is shown in Fig. 1. Δa=a represents the
maxima of relative growth taken over 500 cells (usually
reached between 50 and 100 cells).
Thisenvelopestopbandisonlyslightlybroader thanthatof

the perturbation theory in Ref. [1]—possibly as we are
comparing 3d bunches with 2d coasting beams. A necessary
criterion for instability is k0x;y > 90° as well as kx;y slightly
under 90°, which justifies the nomenclature “90°” stop band.
In a recent study of the “120°” stop band of a sixth-order
space-charge resonance, the analogous condition kx;y <
120° for resonant growth is explained as a property of the
Hamiltonian [10].The sharpmaximumat the right edge,with
a very steep drop to zero, is a coherent effect. Entering from
the right has a strongly attractive effect: An infinitesimal
dilutionofspacechargecausesacorrespondingshiftofkx;y to
the left and induces further growth until kx;y reaches the left
edge of the stop band. Entering from the left, instead, pushes
kx;y backwards and growth stops.
Next, we apply the TRACEWIN particle-in-cell option to a

lattice and bunch identical to Fig. 1; hence, all orders of the
bunch space-charge potential act back on particle motion.
We start with a Gaussian distribution truncated at 3.4σ. The
transverse tune is depressed by space charge to kx;y ¼ 74°
(kz ¼ 35°). Emittances along the lattice are shown in
Fig. 2 (top). As shown in the insets, an early developing
fourth-order space-charge resonance pattern of the kind
4k ¼ 360°, followed and replaced by the envelope insta-
bility of the kind 2k ¼ 180°, is noteworthy. Here, the notion
n × k ¼ m × 360° stands symbolically for the respective
mode, with n the order of the resonance and m the
harmonic of the focusing lattice; it is not to be confused
with a resonance condition for single particles. The fourth-
order phase space structure evolves immediately, and at cell
15 the ϵx; ϵy reach a plateau with a factor of 1.7 growth

(averaged in x; y). Beam core density and emittance get
heavily degraded after about 20 cells, apparently by the
steeply rising envelope instability leading to a second
plateau with a factor of 4 emittance growth. It is charac-
terized by a dominating twofold symmetry washing out the
fourth-order pattern in x − x0 (see the inset at cell 35), until
decoherence beyond cell 120.
This is confirmed by the so-called “halo” Hx;Hy and

“mismatch” Mx;My parameters in Fig. 2. The Hx;Hy are
defined as ratios of a fourth-order moment to a second-
order moment and normalized to zero for uniform density
[11]. For a nontruncated Gaussian distribution they are 1,
and for a water bag distribution 0.25. The Mx;My are
related to the deviation from the initial values of the
matched envelopes [12]. The results in Fig. 2 indicate a
peak of the Hx;Hy at cell 13, where the fourth-order
resonance plateau starts. A peak ofMy at cell 30 is followed
about 10 cells later by a peak of Mx, which are a clear
measure of the envelope growth—accompanied by rising
values of the respective emittances. In the envelope
instability phase, Hx;Hy drop again and reach, beyond

FIG. 1 (color online). Envelope instability resonance stop band
showing relative growth of rms envelopes as a function of kx;y
(fixed k0x;y ¼ 100°). Inset: x envelope from cell 50…100.

FIG. 2 (color online). Plot of emittances (top, with insets
showing x − x0 phase space at cells 10, 35, and 120), halo
(center), and mismatch parameters (bottom) in x and y as a
function of the cell number and for k0x;y ¼ 100°.
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cell 40, more Gaussian-like values as a result of the
beginning decoherence (see inset cell 120). Note that
ϵx; ϵy grow synchronized in the more incoherent fourth-
order resonance phase, while their unsynchronized growth
beyond cell 40 is typical for an instability situation, where
the initial mismatch error matters.
Full response curves after 500 cells for water bag (WB)

and Gaussian (G) distributions are shown in Fig. 3, where
we have varied kx;y such as to cover a complete stop band
analogous to Fig. 1. The distinction between contributions
from fourth-order and envelope growth is based on the
systematic appearance of the two plateaus shown in Fig. 2
(top), which in all cases are found correlated with the
evolution of Mx;y, Hx;y and the characteristic phase space
plot symmetries. The first plateau marks the saturation
of the fourth-order resonance in the initial phase (fourth/
initial); it is followed by the fast-rising envelope insta-
bility, which saturates on a second plateau marked as
“total,” with a significant relative emittance growth up to a
factor of 8.
The width and location of the envelope instability

response in Fig. 3 are in excellent agreement with the
envelope result of Fig. 1. The amount of emittance change
also compares well with the envelope change by noting the
quadratic dependence of emittance change on mismatch
[13]. Remarkably, this applies to both the Gaussian and
water bag distributions. Note that the vanishing fourth-order
response for kx;y < 74° in the water bag case is due to the
missing tails in this distribution. The smaller width and the
location of the stop band center closer to kx;y ¼ 90°—
compared with the envelope instability—are roughly con-
sistent with the perturbational fourth-order instability stop
bands of theKVdistribution inRef. [1]. As before, resonant
growth requires k0x;y > 90° and kx;y < 90°. For complete-
ness, we note that beyond the sharply falling right-hand
side edge there is an ongoing fourth-order resonance
effect, where the values reached at cell 500 are marked
in Fig. 3.

We compare our findings with the UNILAC experiment
[6]. The data were taken over 16 cells of the first tank of the
Alvarez drift tube linac, with clear evidence of a fourth-
order structure in phase space accompanied by 30% rms
emittance growth well supported by the simulation. The
peak of the response was found near k0x;y ¼ 100°, where
kx ¼ 81.1° and ky ¼ 84.6°. Comparison with Fig. 2 as well
as Fig. 3 suggests that the experimental data taken at cell
16 fall well inside the “initial fourth-order” regime, which
lasts at least up to cell 40 for well-matched beams. The
experimental kx;y just above 80° is, however, at the left edge
of the envelope instability stop band of Fig. 3. We have
carried out simulations for varying k0x;y and fixed current
and found that the working point moves into the interior of
the envelope stop band and reaches the maximum emit-
tance growth of over 400% approximately at k0x;y ¼ 95°.
For k0x;y → 95° the experimental data show, instead,
vanishing growth consistent with the fourth-order stop
band. Obviously, the experiment would have had to go
beyond a length of 30–40 cells to show the much stronger
envelope instability. However, we have also found that the
initial mismatch plays a significant role. While the average
mismatch (in x and y) of the experiment was around 10%,
we have found by simulation that doubling this value
would have had the effect—even over the length of 16
cells—that the envelope instability appears much earlier,
overtaking the fourth-order resonance and roughly
doubling the rms emittances. In summary, the earlier
conclusion that “this fourth-order resonance is dominating
over the better known envelope instability and practically
replacing it” [7] is justified only under the special double
assumption of short distance propagation and good initial
matching—otherwise, the much stronger and faster
envelope instability takes over. Whether or not good
matching combined with fast crossing—within a few
cells—offers options to overcome this stop band needs
to be checked in concrete designs.
We examine if a similar phenomenon exists at even

higher order. For k0x;y > 60°, Ref. [1] suggests the exist-
ence of a third-order 3k ¼ 180° type of instability on the
KV-perturbational level. The associated driving terms
would be a third-order “pseudosextupole” term (for exam-
ple, x3) in the space-charge potential, which is absent in a
beam symmetric in x and y. Yet such unsymmetric terms
may exist on the noise level, and instability could make
them finite. The corresponding eigenmode oscillates with
3k0x;y in the absence of space charge, but with space charge
its phase advance can get locked to 180° per cell, in which
case exponential instability analogous to the envelope
instability would be expected. Reference [1] also suggests
a sixth-order 6k ¼ 360° resonance driven by a “pseudo-
dodecapole” component naturally present in a water bag or
Gaussian initial distribution.
Using a water bag distribution and examining a case with

k0x;y ¼ 90°, kx;y ¼ 42° (well inside the third-order stop

FIG. 3 (color online). Stop bands of structural 90° response for
the water bag and Gaussian distributions and fixed k0x;y ¼ 100°,
showing relative emittance growth versus kx;y.
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band characterized in Ref. [1]), we find clear evidence of an
exponentially rising third-order mode as shown in Fig. 4.
The x − x0 phase space pictures at cells 60 and 61 confirm
the third-order (triangular) structure, which flips by 180°
from cell to cell and requires two cells for a complete
period; hence, a parametric instability of the kind 3k ¼
180° is confirmed. The exponential growth is supported by
the fast-rising emittance starting shortly after cell 20, where
the unsymmetric growth in x and y is again a characteristic
of the exponential instability.
The 60° stop band for a water bag distribution shows a

maximum of 170% rms emittance increase at 37° by the
third-order instability, beyond which it drops sharply as
shown in Fig. 5. In addition, we retrieve a 6k ¼ 360°
resonance with sixfold symmetry phase space structure up
to 3.5% rms emittance growth at the low-intensity (left)
side of the stop band. Besides this, phase space pictures
(with 180° phase advance per cell) support the existence of
a fourth-order 4k ¼ 180° mode for kx;y < 35°. This is also
found in Ref. [1], where at k0x;y ¼ 90° a fourth-order 45°
perturbation stop band is indicated for 40° > kx;y > 25°.
While these processes all occur relatively early—typically
within the first 150 cells—a lower gradient and more
incoherent type of resonant growth is ongoing but not
clearly associated with third or fourth order (with values at
cell 500 indicated in Fig. 5). For comparison, Fig. 5 shows
that the Gaussian distribution function has a much weaker
indication of this third-order instability and limited to a
smaller range of kx;y. Instead, there is primarily a more
ongoing incoherent resonant response—again not clear of
which order—and increasing with space charge. It must be
assumed that the additional tails of the Gaussian distribu-
tion suppress the strong third-order instability response of
the water bag case and lead to a more incoherent response.
For both the water bag and Gaussian, the region 60° <
kx;y < 90° (partly shown) is free of emittance growth,
which is just starting for kx;y < 57°.
In summary, resonant structural space-charge effects

show enhanced complexity. In particular, the competition

between instability and resonance effects, like 2k ¼ 180°
with 4k ¼ 360° modes at 90° or 3k ¼ 180° with 6k ¼ 360°
modes at a 60° stop band, has been established.
Theoretically, this phenomenon might also occur with
correspondingly increasing order modes at 45° or 30°,
etc., although it might be difficult in realistic linac beam
dynamics with changing parameters to practically identify
such phenomena. Yet their existence should not be ignored,
if in future high-intensity linacs the space-charge limit is
further approached.
The competition between instability and resonance is

particularly significant in dealing with the 90° linac stop
band and interpreting its nature on this new basis. Its
relevance to linac design may warrant further experimental
efforts, if it becomes desirable to overcome the not always
practical design limitation to less than 90°.
The role of Landau damping by tails of the distribution

function and with slow synchrotron motion as common to
circular accelerators is left to future work.
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