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We present a numerical study of the statistical properties of three-dimensional dissipative turbulent flows
at scales larger than the forcing scale. Our results indicate that the large scale flow can be described to a
large degree by the truncated Euler equations with the predictions of the zero flux solutions given by
absolute equilibrium theory, both for helical and nonhelical flows. Thus, the functional shape of the large
scale spectra can be predicted provided that scales sufficiently larger than the forcing length scale but also
sufficiently smaller than the box size are examined. Deviations from the predictions of absolute equilibrium
are discussed.
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Experimental and numerical studies of three-dimensional
homogeneous hydrodynamic turbulent flows have been so
far mostly focused on the finite energy flux solutions of the
Navier-Stokes equations that manifest themselves on scales
smaller than the forcing scale for which the Kolmogorov
cascade and intermittency take place [1]. This is because the
flows of many experiments designed to study statistically
stationary turbulent regimes are forced at scales not much
smaller than the size of the container. This is also the case of
most direct numerical simulations (DNS) for which the flow
is often forced in the largest possible modes aiming for the
largest scale separation between the forcing scale and the
small scales in the dissipative range. A notable exception is
of course the limit of two-dimensional flows for which the
inverse cascade of energy [2] leads to a negative flux of
energy that excites scales larger than the forcing scale.
Many flows of geophysical or astrophysical interest far

from the two-dimensional limit involve spatial structures at
scales larger than the forcing scale. At these scales, no
energy flux is expected and the usual Kolmogorov cascade
picture does not hold. This is also true for some flows
involved in industrial processes, such as large scale
turbulent mixing. Dynamical and statistical properties of
the zero flux solutions in scales larger than the forcing scale
could thus be of interest for many applications in three-
dimensional hydrodynamic turbulence.
Despite the lack of quantitative studies of the large scales

in three-dimensional statistically stationary turbulence, it
has been believed for a long time that the scales larger than
the forcing scale are in statistical equilibrium (see Ref. [1],
p. 209). The argument is that the energy driving the flow is
transferred from the forcing scale lf to the dissipation scale
lη by the Kolmogorov cascade and that no mean energy
flux exists toward scales larger than lf. The scales between
lf and the container size L, thus, do not involve any mean
energy flux and could be in statistical equilibrium.

With this assumption a k2 energy spectrum similar to the
Rayleigh-Jeans spectrum for blackbody radiation would
result with all modes in the range s2π=L < k < 2π=lf
being in equipartition. Such a spectrum was obtained long
ago using the Hopf equation for flows without forcing and
viscosity [3]. It is also the spectrum obtained in the absence
of mean helicity in the truncated Euler equations (i.e., the
Euler equations where only Fourier modes with wave
numbers jkj ≤ kcut have been kept, kcut being the truncation
wave number) [4]. It should be noted that the steady state
problem considered here differs from the one of the large
scale structure in decaying turbulence, although a similar
spectrum has been predicted [5].
When the initial conditions involve mean helicity H in

addition to kinetic energy E, both quadratic invariants need
to be taken into account in deriving the energy and helicity
distribution among scales for the truncated Euler system.
Following the statistical mechanics approach that is usually
used to predict absolute equilibria of ideal homogeneous
turbulence [6,7], the Boltzmann-Gibbs equilibrium distri-
bution is defined as P ¼ Z−1 expð−αE − βHÞ, where Z ¼R
Γ expð−αE − βHÞdΓ is the partition function integrated
over the phase space Γ and α, β can be seen as the inverse
temperatures in the classical thermodynamic equilibrium
sense, which are determined by the total energy and the
helicity of the system. From there, Kraichnan [2] derived
the absolute equilibria of the energy spectrum EðkÞ and the
helicity spectrum HðkÞ, which are

EðkÞ ¼ 4παk2

α2 − β2k2
and HðkÞ ¼ 8πβk4

α2 − β2k2
; ð1Þ

with α > 0 and α > jβjkcut. These spectra have a singularity
at k ¼ ks ≡ α=β > kcut outside the range of validity of
Eqs. (1). The ratio jβjkcut=α gives a measure of the relative
helicityHðkÞ=½kEðkÞ� of the flow with 0 corresponding to a
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nonhelical flow, and 1 to the fully helical singular case
where all energy and helicity is concentrated in the largest
wave numbers jkj ¼ kcut. The truncated Euler equations
have been widely studied by Brachet and co-workers [8]
and the validity of the predicted spectra in Eqs. (1) has been
verified. A recent work has also shown that the kinematic
dynamo properties of an Arnold-Beltrami-Childress flow
forced at small scales compared to the domain size can be
well described by modeling the large scales of the flow
using the truncated Euler equation [9].
In this Letter we show that despite the fact that in three-

dimensional hydrodynamic turbulence the scales between
the forcing scale and the container size are not isolated from
the turbulent scales, their statistics may still be reasonably
approximated as if they were in statistical equilibrium. We
consider flows with high enough scale separation by
applying helical and nonhelical forcings at intermediate
scales using numerical simulations of the forced hyper-
viscous Navier-Stokes equations and we focus on the
dynamical and statistical properties of the large scales.
In laboratory experiments as well as in planets and stars,

physical boundaries confine fluids and determine the
largest possible length scales. In our DNS, the computa-
tional domain is the surrogate for this spatial confinement.
For our study it is important to obtain high enough scale
separation between the size of our periodic box 2π and the
forcing scale while at the same time small scale turbulence
is resolved. Forcing at intermediate scales and aiming for a
turbulent flow with high enough scale separation is almost
prohibitive even with today’s supercomputing power. We
partly circumvent this difficulty by considering the hyper-
viscous Navier-Stokes equations under the assumption
that the viscous scale should not significantly affect the
statistical properties of the large scales. The hyperviscous
Navier-Stokes equations then read as

∂tuþ ðu · ∇Þu ¼ −∇Pþ ð−1Þnþ1νh∇2nuþ f ; ð2Þ

where u denotes the solenoidal velocity field, νh is the
specified constant hyperviscocity, f is the forcing function,
which is described below, and P is the hydrodynamic
pressure. Note that for our purposes the hyperviscous
term was chosen to take the value of n ¼ 4. In the ideal
case νh ¼ 0 and f ¼ 0 Eq. (2) conserves the kinetic energy
E ¼ 1

2
hjuj2i and the helicity H ¼ hu · ωi with ω ¼ ∇ × u

being the vorticity and the angular brackets denoting
a spatial average unless indicated otherwise. The level
of helicity in the flow corresponds to the degree of
the alignment between the velocity and the vorticity and
this is given by the normalized helicity −1 ≤ ρH ≡H=
ðhjuj2ihjωj2iÞ1=2 ≤ 1.
Using a standard pseudospectral code we numerically

solve Eq. (2) satisfying ∇ · u ¼ 0. Aliasing errors are
removed using the 2=3 rule, i.e., wave numbers kmin ¼ 1
and kmax ¼ N=3, where N is the number of grid points on

each side of the computational box. The temporal integration
was performed using a third-order Runge-Kutta scheme.
Further details on the code can be found in Ref. [10].
In this study, the velocity field is forced at intermediate

wave numbers kf. The forcing that we consider is a helical
random forcing

fH ¼ f0f½cosðkfyþ ϕyÞ þ sinðkfzþ ϕzÞ�x̂;
½cosðkfzþ ϕzÞ þ sinðkfxþ ϕxÞ�ŷ;
½cosðkfxþ ϕxÞ þ sinðkfyþ ϕyÞ�ẑg; ð3Þ

where fH · ∇ × fH ¼ jkjf 2H > 0 at each point in space and a
nonhelical random forcing

fNH ¼ f0f½sinðkfyþ ϕyÞ þ sinðkfzþ ϕzÞ�x̂;
½sinðkfzþ ϕzÞ þ sinðkfxþ ϕxÞ�ŷ;
½sinðkfxþ ϕxÞ þ sinðkfyþ ϕyÞ�ẑg; ð4Þ

where hfNH · ∇ × fNHi ¼ 0. The phases ϕx, ϕy, ϕz were
changed randomly at given correlation time scales τc. All
the necessary parameters of our problem are tabulated
below (see Table I). Here we define the Reynolds number
based on our control parameters as Re≡ ufk1–2nf =νh,

where uf ∝ ðf0=kfÞ1=2.
Since we are interested in the large scale behavior we

need to make sure that our DNS have been integrated long
enough so that the largest scales are in a statistically
stationary state. In order to illustrate that such states have
been reached, we define the energy weighted in the large
scales as MðtÞ ¼ P

k;k≠0k
−4Eðk; tÞ. M is a large scale

quantity and we monitor it as a function of time (see
Fig. 1). During the first time steps the very large scales are
generated and their energy becomes quickly fairly large
[see insets in Figs. 1(a) and 1(b)]. Then, they decay on a
much slower time scale. After long enough time integration
the large scales reach a stationary state for both helical
[Fig. 1(a)] and nonhelical flows [Fig. 1(b)]. In what follows
we analyze the data from these saturated states.
Figure 2 presents the energy spectra compensated with

k−2 [Fig. 2(a)] and the helicity spectra compensated with
k−4 [Fig. 2(b)]. Note that the energy and helicity spectra

TABLE I. Numerical parameters of the DNS. Note that
τf ≡ ðkminf0Þ−1=2.

kf ρH f0 τc=τf νh Re N

10 0.6 1.0 0.3 5 × 10−12 6.3 × 103 128
20 0.6 2.0 0.15 5 × 10−15 3.5 × 104 256
40 0.6 4.0 0.075 1 × 10−17 9.7 × 104 512
10 0.0 1.0 0.3 5 × 10−12 6.3 × 103 128
20 0.0 2.0 0.15 5 × 10−15 3.5 × 104 256
40 0.0 4.0 0.075 1 × 10−17 9.7 × 104 512
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collapse since they are rescaled with k=kf. In Fig. 2(a) the
energy spectra for the helical and nonhelical flows are
shown with the nonhelical spectra being shifted down for
clarity. Our data display a EðkÞ ∝ k2 scaling at low wave
numbers k < kf both for the helical and the nonhelical
flows. Similarly, the collapsed helicity spectra in Fig. 2(b)
display the scaling HðkÞ ∝ k4. These scalings are in
agreement with the absolute equilibria of the truncated
Euler equations for helical and nonhelical flows. For
comparison to the Kraichnan’s theory, we have plotted
Eqs. (1) as dotted lines (see Fig. 2) using values of α and β
obtained from a linear fit. These curves indicate that the
divergence of the spectra predicted by Kraichnan’s Eqs. (1)
at ks ¼ α=β is expected at ks ≃ 2.5kf, which is well beyond
the expected validity of the absolute equilibrium regime.
For this reason no singular behavior is observed deviating
from the HðkÞ ∝ k4 scaling and the EðkÞ ∝ k2 power law
due to the presence of helicity.
To investigate the effect of helicity in the large scales for

the helical runs we plot the relative helicity spectra rescaled
with k=kf in Fig. 3. Kraichnan’s absolute statistical
equilibria [Eqs. (1)] imply that ðkf=kÞHðkÞ=½kEðkÞ� is
equal to the nondimensional number 2βkf=α ¼ 2kf=ks.
This ratio appears to be approximately constant for the
highest kf runs and only for the range of wave numbers
3kmin ≤ k < kf. The measured value of this ratio in this
range gives 2βkf=α≃ 0.8, indicating the amount of the
relative helicity in the large scales. Despite the fully helical
forcing [Eq. (3)] used, not enough helicity has been
transferred in the large scales to make the flow fully helical
(i.e., βkf=α ¼ 1).
Deviations from Eqs. (1) do exist at the largest scales of

the system k ≤ 2kmin. These scales appear to be more
energetic and more helical than absolute equilibrium
predicts. The amplitude of the deviation is independent
of the dissipation mechanism and only weakly dependent

(a) (b)

FIG. 1 (color online). Large scale quantityM normalized by its
time average hMi as a function of time for (a) helical and
(b) nonhelical flows. The blue (black) curves denote the runs
forced at kf ¼ 10, the red (gray) at kf ¼ 20, and the green (light
gray) at kf ¼ 40.

(a)

(b)

FIG. 2 (color online). (a) Compensated k−2EðkÞ energy spectra
for helical (top) and nonhelical (bottom) flows. (b) Compensated
k−4HðkÞ helicity spectra. The dotted lines represent Kraihnan’s
absolute equilibria [Eqs. (1)].

FIG. 3 (color online). Relative helicity spectra HðkÞ=½kEðkÞ�
rescaled with k=kf.
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on scale separation. There are many possible reasons for
this behavior. First, for modes with wavelengths close to
the box size the assumptions of isotropy used in the
derivation of Eqs. (1) are not valid and deviations from
the isotropic result are expected. Another possibility is that
a large scale instability could be present [11,12]. Such an
instability can transfer energy directly from the forced and
turbulent scales to the largest scale of the flow that alters the
distribution of energy among modes in the steady state.
Such a nonlocal transfer of energy from small to large
scales occurs in zonal flows in planetary atmospheres or in
plasma physics [13].
At steady state no inverse cascade (negative flux) is

expected in three-dimensional hydrodynamic turbulence
for either energy or helicity. This is indeed displayed in
Fig. 4 which shows the energy flux ΠEðkÞ [Fig. 4(a)] and
the helicity fluxΠHðkÞ [Fig. 4(b)] normalized by the energy
dissipation rate ϵE ¼ 2ν

R∞
0 k2nEðk; tÞdk and the helicity

dissipation rate ϵH ¼ 2ν
R∞
0 k2nHðk; tÞdk, respectively, for

the helical flow with kf ¼ 40. For the wave numbers
k > kf both time-averaged fluxes are positive and constant
over the range of kf < k < 2.5kf, signifying a forward
energy and helicity cascade. In the k < kf range both time-
averaged fluxes are zero as expected for absolute equilibria.
However, even though the time-averaged ΠEðkÞ and ΠHðkÞ
are zero this is not true for the instantaneous fluxes that
have large fluctuations of both signs. The power injected by
the forcing at k ¼ kf into the flow fluctuates because both
the velocity and the forcing phases are fluctuating. It is thus
expected that local couplings generate fluctuations of the
energy flux in the shells close to kf. In addition, Fig. 4
shows that while these fluctuations remain large within the
direct cascade, they are strongly damped toward small
wave numbers.
In this Letter we investigated to what extent the large

scale flow in three-dimensional dissipative hydrodynamic
turbulence can be described by the absolute statistical
equilibria exhibited from the truncated Euler equations.
Using numerical simulations we focus at the spectra of the

energy and helicity at large scales. We considered both
helical and nonhelical flows which were forced at inter-
mediate wave numbers. For the nonhelical flows we
observed a k2 energy spectrum at large scales, where the
energy is equally distributed among the wave numbers
k < kf. For the helical flows a k2 energy spectrum persisted
at large scales and the helicity spectrum displayed a k4

power law at k < kf in agreement to Kraichnan’s theory for
ideal helical flows [2].
Despite the fully helical forcing used, not enough

helicity was transferred in the large scales to allow us to
test the singularity of the spectra at ks ¼ α=β which would
also distinguish the scaling of the energy spectra between
the helical and the nonhelical flows. In absolute equilibria
of flows without forcing and dissipation of energy the
values of the inverse temperatures are determined by the
initial conditions. However, in this dissipative system it is
not clear how the system selects these values.
A measurable deviation in the energy and helicity spectra

was also observed at the largest scales of the system. Scales
of size similar to the box were observed to be more helical
and more energetic than the absolute equilibrium predic-
tions. We speculate that these deviations are either due to
the absence of isotropy in these scales or due to the
presence of a large scale instability.
Energy and helicity fluxes were also investigated. The

energy and helicity have a forward cascade for k > kf and
no cascade (zero flux) for k < kf. Notably, even though the
time-averaged fluxes are zero, the absolute equilibrium
spectra at large scales interact with the forced and dis-
sipative scales through flux fluctuations of the energy and
the helicity close to the forcing scale. These interactions are
not present in the absolute equilibrium theory that assumes
no external sources or sinks of energy and helicity.
However, flux fluctuations are also expected in the trun-
cated Euler equations and are responsible for the formation
of the Kraichnan spectra. Whether the fluctuations we
observe play a subdominant role or they provide a different
mechanism for the formation of the k2 spectra is a question
that requires further investigation. Note though that the
standard deviation σðkÞ of these fluctuations decreases like
k4 toward small wave numbers and, hence, they do not feed
the excess of energy and helicity observed at the largest
scales. Then, one could infer that σðkÞ=EðkÞ ∝ ð ffiffiffiffi

E
p

=kfÞk2
for k < kf which shows how these fluctuations are related
to the Kraichnan spectrum.
To conclude, the present results provide support to the

relevance of the absolute equilibrium spectra to the behav-
ior of the large scales in forced dissipative turbulent flows
despite the fact that scales between the forcing scale and the
domain size (k < kf) are not isolated from the turbulent
small scales (k > kf).

The authors acknowledge enlightening discussions
with M. E. Brachet. V. D. acknowledges financial support

(a) (b)

FIG. 4 (color online). (a) ΠEðkÞ=ϵE spectra and (b) ΠHðkÞ=ϵH
spectra for the helical flow with kf ¼ 40. Thick blue lines
represent the time-averaged values while thin gray lines represent
the instantaneous values for various instants in time.
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