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In dense multiple scattering media, optical fields evolve through both homogeneous and evanescent
waves. New regimes of light transport emerge because of the near-field coupling between individual
scattering centers at mesoscopic scales. We present a novel propagation model that is developed in terms of
measurable far- and near-field scattering cross sections. Our quantitative description explains the increase
of total transmission in dense scattering media and its accuracy is established through both full-scale
numerical calculations and enhanced backscattering experiments.
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Because of scattering in complex media, the phase,
amplitude, and frequency of waves change randomly in
time and space. The magnitude and direction of the power
flux density changes continuously. Without accounting
explicitly for wavelike manifestations (diffraction or inter-
ference), the energy transport is described as the conserva-
tion of so-called specific intensity [1]. When the radiation
propagates over a distance ds along the direction s, the
specific intensity reduceswith dI ¼ −ρðσsca þ σabsÞIds due
to scattering and absorption but, at the same time, it also
increases because of scattering with probability Pðs0; sÞ
from different directions s0 into s. There are no practical
solutions for this radiative transport depiction in most
realistic situations. However, an angular moments expan-
sion of the specific intensity leads to the ubiquitous
description of diffusive transport [1]. This diffusion approxi-
mation is valid when the energy dissipation is minimal, the
effective scattering is isotropic, and the source-detector
separation is large compared to scattering length scales.
The diffusive energy transfer is characterized by diffe-

rent scales. Aside from absorption labs and scattering lsca
lengths, one also defines a transport mean-free path
l� ¼ lsca=ð1 − gÞ as the scale over which the isotropic diffu-
sion establishes. The scattering asymmetry parameter g is
defined [2] as the average of the cosine of the scattering
angle g≡ hcos θi. At this scale, the directional energy flux
is randomized through successive scattering events. It is
because of this randomization that details of particular
interaction events are averaged out and simple energetic
arguments provide an acceptable description of light
propagation. A common representation of energy transport
depicts the process as a classical random walk of particles
of energy, photons [3]. The dynamic properties of this
diffusion of photons can be described in terms of the
scattering and dwell times involved and the associated
velocities for phase, group, and energy transport [4,5].

Structural properties of random media determine differ-
ent regimes of mesoscopic light transport. When the
separation between scattering centers is much larger than
the wavelength, the scattering events are considered to be
independent. In this independent scattering approximation
(ISA) the transport mean-free path l�ISA ¼ ½n0σð1 − gÞ�−1
depends only on the number density n0 of scattering cen-
ters, the optical cross section σ of an individual scatterer,
and the asymmetry parameter g of a generic scattering
event [2].
As the concentration of scatterers rises, the interparticle

distances decrease and their spatial locations become
correlated, leading to possible local interferences. The
phase correlation between the scattered waves weakens
the effective cross section below that of an individual
scattering event. This collective scattering (CS) is quanti-
fied by the structure factor SðqÞ determined by the pair-
correlation function characterizing the spatial distribution
of the scattering potential. In this case, the scattering
phase function is renormalized ~PðqÞ ¼ PðqÞSðqÞ, which, in
turn, modifies the effective scattering cross section σCS ¼R
~PðqÞqdq. The renormalization of the scattering process

leads to a coherent correction l�CS ¼ ½n0σCSð1 − gCSÞ�−1 for
the transport mean free path. The correlated particles can,
therefore, be regarded as collections of pseudoscattering
centers that are characterized by a modified scattering form
factor [6,7]. In this interpretation, there is no further
interaction between these fictitious scatterers. The interfer-
ence between the scattered waves can increase the forward
scattering and weaken the effective cross section below that
of an individual scattering event σCS < σ. Positional corre-
lations then lead to significantly large (wavelength depen-
dent) transport mean free paths, which are responsible, for
example, for the relatively large conductivity of disordered
liquid metals [8,9] or the transparency of the cornea to
visible light [10,11]. However, short-range order can also
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lead to an enhanced effective cross section and negative
values of the asymmetry parameter as it has been recently
shown in experiments in colloidal liquids [12] and amor-
phous photonic materials [13,14]. The wavelength depend-
ence of CS scattering is also the origin of natural structural
coloration [15,16].
Multiple scattering effects are not considered within

the CS description. As the particle density increases, the
actual field incoming towards the scatter includes not
only the initial external field but also the fields scattered
by the surrounding particles. In analogy with effective
medium theories [17,18], different methods were pro-
posed for homogenizing the environment, surrounding
the location of a singular scattering event. A common
approach is to use a modified form factor PðqÞ corre-
sponding to an isolated scatterer in a background with an
effective refractive index neff and then use this information
in conventional transport descriptions [13,16,19]. This
refractive index homogenization eliminates the influence
of the specific environment but a far-field description of
scattering is still necessary.
At even higher densities, even this CS description fails

[20,21] because, in close proximity, scattering centers
can also interact through evanescent fields. This is clearly
beyond the previous descriptions which not only consider
the scatterers to act independently of their specific envi-
ronment but also describe the scattering in terms of far-field
properties such as Mie cross sections. Thus far, a precise,
quantitative depiction of scattering for the case when the
particles are located in the near field (NF) of each other is
still missing even for the canonical example of spherical
scatterers.
To set the limits for the conventional description of light

transmission and to get quantitative insights into the
physical situations typical to dense media, we first con-
ducted systematic numerical calculations. Using a multiple
sphere T-matrix approach [22], we evaluated rigorously the
field distribution inside 3D composite media containing
various distributions of particles. Typical results are shown
in Figs. 1(a)–1(c) for the situation where particles in
different concentrations are distributed throughout a cylin-
drical slab with different thicknesses L. More details about
these calculations are included in the Supplemental
Material [23]. It is readily observed in Fig. 1 that, as the
concentration of particles increases, the mean interparticle
distance decreases and more and more localized coupling
occurs between neighboring particles.
In the classical description of diffusive transport through

a slab of volume V and area A, the transmission scales
according to Ohm’s law: T∝l�=L¼V=Nσð1−gÞL¼
A=Nσð1−gÞ [27]. This means that for a fixed ratio of area
of the slab to number of particles A=N, the transmission is
independent of the length of the medium. However, as
apparent from the results of our simulations summarized in
Fig. 1(d), the transmittance actually increases. This process

could be interpreted as a rise in the effective value of l� or,
alternatively, it can be described as the emergence of a
different regime of mesoscopic transport.
When propagating in highly scattering media, optical

waves comprise both homogeneous and inhomogeneous
components. Thus, the energy is not only carried by
propagating waves but it also evolves through evanescent
coupling between individual scatterers. For linear random
media, as scatterers become optically connected [20], near
the onset of percolation, the near-field coupling between
particles can be seen as an opening of new transmission,
optically connected, channels as suggested in the inset of
Fig. 1(d). High transmission through three-dimensional
lattices of close packed spheres has been qualitatively
explained as a percolation of light through overlapping
whispering gallery modes [28]. In contrast with electronic
systems, the appearance of optically connected channels is
not expected to lead to percolation threshold phenomena
[29]. Since power flows through both connected and
scattering channels, the behavior of the transmittance
should resemble that of thermal conductance of composites
near percolation [30]: these new optically connected
channels can be seen as adding parallel resistors to the
(far-field) scattering channels [see inset in Fig. 1(d)]. As a
result, the opening of these additional channels increases
the overall transmission:
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FIG. 1 (color). (a)–(c) Intensity distributions in the cross-
sectional areas of 3D slabs with reducing lengths as indicated.
The media contain a ¼ 100 nm radius TiO2 particles randomly
dispersed throughout the volume. Rings colored in gray denote
particles located in the considered cross section, while the white
and blue ones indicate particles situated at 100 nm above and,
respectively, below that plane. (d) Total transmission as a function
of inverse thickness. The blue and black symbols designate the
ISA and the results of T-matrix calculations, respectively. The
inset illustrates the appearance of additional transmission chan-
nels due to near-field coupling (see text).

PRL 115, 203903 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

13 NOVEMBER 2015

203903-2



T ¼ TCS þ TNF ¼ ðl�CS þ l�NFÞL−1: ð1Þ

In terms of discrete scattering processes, one can con-
sider two types of events: (i) conventional Mie-like
scattering where the illumination is provided by a plane
wave and (ii) scattering events excited by evanescent
waves. Of course, correcting the total transmission in this
manner is practically relevant only if it can be described in
terms of physically meaningful and measurable quantities
such as a near-field scattering cross section σNF.
There were several notable attempts to calculate ana-

lytically or evaluate numerically the scattering of evanes-
cent waves by spherical objects [31,32]. It has been shown
that the conventional Mie theory can be directly applied
to scattering of evanescent waves through a complex angle
rotation of the standard Mie solution [33,34]. In this
approach, by rotating both the direction and the distribution
of the incident electric ~Eð~rÞ ¼ R̂yð−γÞ~E½R̂yðγÞ~r� and

magnetic ~Hð~rÞ ¼ R̂yð−γÞ ~H½R̂yðγÞ~r� fields by the complex
angle γ, a z propagating monochromatic plane wave can be
transformed into an evanescent wave. Thus, including this
transformation in the conventional Mie calculation, one
can readily find the results of the scattering of evanescent
electromagnetic waves from spherical particles. We note
that, due to the exponential decay of the evanescent wave,
the scattering has some atypical features. In standard Mie
scattering, because of the spherical symmetry, there are no
cross-polarization terms in the scattering matrix. In the
evanescent scattering, however, the exponentially decreas-
ing amplitude introduces an asymmetry, which leads to
such polarization mixing. Moreover, as opposed to standard
theory, the Mie coefficients do not necessarily decrease
with their order and the magnetic terms could actually be
enhanced [31].
This demonstrates that σNF can be not only measured

experimentally but it can also be easily evaluated numeri-
cally in the case of a spherical scatterer. Details about both
calculations and measurements based on near-field scan-
ning optical microscopy (NSOM), of near-field scattering
are included in [23].
Grounded on the complete description of the scattering

process including both homogeneous and inhomogeneous
excitation, one can reinterpret the transport phenomena. Of
course, particles can interact through evanescent waves
only if they are in close proximity of each other. The
process should therefore depend on both the number of
scatterers per cubic wavelength n0λ3 and the strength of
evanescent coupling determined by the average interpar-
ticle distance d [35], which, in turn, is set by the number
density n0. The probability for evanescent transfer can then
be written as pNF ¼ n0λ3 e−κd, where κ is the characteristic
attenuation length for the evanescent waves. Thus,
in the model where the light is transmitted through
propagating and evanescent channels one can redefine
the transport mean free path as

l�CSþNF ¼
1

n0σ�ð1 − g�Þ þ
�

pNF

n0σNFð1 − gNFÞ
�
: ð2Þ

Because the decay rate of the evanescent waves depends
on the incident angle, an average ð…Þ is taken over the
angular domain defined by the refractive indices of the
particle and its surrounding medium. Moreover, as we
mentioned before, the near-field cross section and the
asymmetry parameter are both polarization dependent
and, therefore, the values in Eq. (2) are also averaged over
the two polarization states.
In practice, the complex angle rotation described before

can be used to evaluate scattering properties such as
scattering cross sections and asymmetry parameters.
These values can then be used in Eq. (2) to evaluate the
transport mean free path for media with different particle
concentrations. It is worth mentioning here that l� is the
only directly measurable quantity in a multiple-scattering
experiment such as, for instance, enhanced backscatter-
ing (EBS).
To verify the accuracy of our model, we conducted an

EBS experiment on colloidal media with increasing con-
centrations. We used aqueous suspensions silica particles
with an average diameter of 1 μm. The schematic repre-
sentation of the experimental setup is shown in Fig. 2(a).
A collimated laser beam with λ ¼ 476 nm passes through
a beam splitter and through a filter consisting of a linear
polarizer followed by a quarter wave plate. The circular-
polarization filter ensures that no single-scattering con-
tributions are collected. The circularly polarized beam
further impinges on a glass cuvette containing colloidal
suspension. The backscattered light is deflected by the
beam splitter and then is focused by a lens with 250 mm
focal length on the plane of a CCD array (520 × 480 pixel
array). During the measurements, an ensemble average
is performed by recording typically 100 different data
frames. Details about EBS measurements are included
in [23].
The results corresponding to different colloidal con-

centrations are summarized in Fig. 2(b) where the
experimental l� values are normalized to the corre-
sponding ones evaluated in the ISA framework. As can
be seen, when increasing the concentration of the
particles, the measured transport mean free path starts
to deviate from both the ISA predictions and the
estimations based on the CS correction model. On
the other hand, our near-field transmission model shows
a remarkably good agreement with the experimental
data. The remaining minor differences may be attributed
to experimental conditions such as internal reflection
[25,26] and potential sample nonuniformities [36,37].
We note that this experimental demonstration augments
the significance of our previous numerical calculations:
the increase of l� values due to additional near-field
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coupling is apparent in both transmission and reflection.
At high volume fractions, both experimental and
numerical data clearly illustrate the failure of the
conventional description of scattering solely in terms
of propagating waves.
In conclusion, we have quantitatively described the

characteristics of multiple light scattering in dense
composite media where particles are located in close
proximity and interact through evanescent near-fields.
We have shown that a new regime of transmission emerges,
which can be described in terms of physically meaningful
and measurable quantities such a near-field scattering
cross section σNF. In this regime, additional transmission
channels open because of the near-field interactions
between scatterers placed in close proximity.
A full-scale calculation of the electromagnetic field

distribution in 3D random media indicates the emergence
of additional channels for energy transfer. The model is
also supported by the results of a comprehensive EBS
experiment. We found that the transport mean free path
corresponding to the different concentration of scatterers
is in very good agreement with our model for near-field
corrected transport. The use of such detailed descriptors
for individual scattering events not only improves the
macroscopic description of light propagation in random
media but it also enhances the predictive capabilities of
light transport models.
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