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Motionless domain walls representing connecting temporal or spatial orbits typically exist only for very
specific parameters, around the so-called Maxwell point. This report introduces a novel mechanism for
stabilizing temporal domain walls away from this peculiar equilibrium, opening up new possibilities to
encode information in dynamical systems. It is based on antiperiodic regimes in a delayed system close to a
bistable situation, leading to a cancellation of the average drift velocity. The results are demonstrated in a
normal form model and experimentally in a laser with optical injection and delayed feedback.
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Spatially extended nonlinear systems often admit multiple
coexisting stable states, and the dynamical properties of the
fronts connecting them are fundamental in the understanding
of pattern formation and localized structures (LS). These
dissipative objects [1–11] occur in many natural and labo-
ratory systems and are characterized by a correlation range
much shorter than the size of the domain, making them
individually addressable. Localized structures due to a front
between a homogeneous and a cellular state are intrinsically
stable [12–14], as the pattern oscillations stabilize the position
of the front against small perturbations. In contrast, fronts
betweenhomogeneous states are typically stable only for very
specific parameters and lead otherwise to a coarsening.
In this Letter, we discuss a robust mechanism for the

stabilization of fronts between homogeneous states based
on a generic property of time delayed systems having no
equivalent in spatially extended systems. We show that
structures occurring within a time delay can be stabilized
by a flip inversion occurring at each cycle, thus allowing the
stabilization of self-localized temporal domains. The case of
equispaced domain walls reduces to the so-called square
waves [15,16]. This has not only relevance for the funda-
mentals of the dynamics of delayed systems, but also meets
recent interest in temporal LS realized in photonics [17–23].
Because of their intrinsically fast dynamics, the possibility to
use LS as bits for information processing was addressed
early in nonlinear optics [24–26]. Interesting results were
achieved for spatial solitons in semiconductor microcavities
[27–29], although it turned out that spatial disorder limits
parallelism and control [30,31], motivating further studies
into temporal LS.
As indicated, in the simple case of a unidimensional

bistable system with a single dynamical variable ψðx; tÞ, the
stable coexistence between two homogeneous phases
is merely achieved for a single value of the parameters, the
so-called Maxwell point. Here a domain wall separating the

two states would bemotionless. Yet, such a regime possesses
little experimental significance since any deviation of the
control parameter or any symmetry breaking effect implies
that one of the two bistable phases will eventually invade the
other in away reminiscent of nucleation bubbles in first order
phase transitions.
In recent years, building on the strong analogies between

spatial and delayed systems [32–34], a similar symmetry
breaking induced coarsening dynamics was shown to occur
in delayed bistable systems [35,36]. The ability to control
the motion of these walls would have significant implica-
tions, as for instance to encode and process information
with a fast nonlinear delayed system. Motivated by this
idea, the pinning of domain walls was recently demon-
strated via an external temporal modulation [37]. Departing
from the analogies with spatial systems, we demonstrate in
contrast a stabilization mechanism based not upon a fast
active modulation, but upon a slow, self-induced dynamics.
We envision the use of a lesser known property of delayed
systems: their ability to generate antiperiodic output, i.e.,
temporal traces getting inverted after each time delay τ,
thereby inducing an effective periodicity 2τ.
While this effect was studied theoretically in

Refs. [15,16,38] and square waves were demonstrated
experimentally in several optical [39,40] and optoelectronic
systems [41], we demonstrate in this Letter how this generic
property of antiperiodicity can be harnessed to create robust
motionless domain walls and prevent the coarsening phe-
nomenon. This allows us to store information even far from
theMaxwell point and/or in the absence of bistability. Such an
idea has no equivalent in bona fide spatial systems since the
antiperiodicity would actually correspond to a space defined
over a Möbius strip. We evidence experimentally and theo-
retically stable domains in an injected semiconductor laser
with delayed feedback that are insensitive to symmetry
breaking and exist beyond the bistability regime.
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We base our analysis on the normal form of the imperfect
pitchfork bifurcation modified by the inclusion of a linear
delayed contribution

ε
dΨ
dt

¼ μΨþ βΨ2 −Ψ3 þ ηΨðt − 1Þ: ð1Þ
In Eq. (1), the parameter μ controls the bistability, β
represents the symmetry breaking, and η is the amplitude
of the time delayed feedback. The temporal scale is
normalized by the time delay τ. We study the limit of long
delays τ → ∞, and define a smallness parameter ε ¼ 1=τ
making apparent the singular nature of Eq. (1). Delay
differential equations possess in the long delay limit an
eigenvalue spectrum that can be divided in two parts, see for
instance Ref. [42] and references therein. A quasicontinuous
branch stems from the influence of the delayed contribution
while a discrete spectrum is generated by the instantaneous
linear terms. We are interested in the regimes where a
portion of the quasicontinuous branch may become unstable
giving rise to smooth dynamics. We set μ < 0 ensuring the
stability of the discrete spectrum.When ε → 0, the left-hand
side of Eq. (1) can be assumed, as a first approximation, to
vanish. Such an approach is enlightening as one finds a
functional mapping governing the evolution of the small
deviations from the trivial solution Ψ ¼ 0 as

ΨðtÞ ¼ −κΨðt − 1Þ ð2Þ
with κ ¼ ημ−1. Because of the infinite dimensionality of
delay differential equations, an initial condition must be
given as a function defined over an interval equal to the
delay. If jκj < 1, any initial condition slowly decays from
one round-trip to the next and the steady state ΨðtÞ ¼ 0 is
asymptotically stable. Yet, for jκj > 1, the trivial solution
may bifurcate via two widely different scenarios. If κ < −1,
the temporal profile evolves regularly from one round-trip to
the next while for κ > 1, the profile gets inverted at each
round-trip signaling the onset of a period-2 (P2) regime.
The slowly evolving dynamics of the temporal profile can

be better understood and visualized via the spatiotemporal
equivalence between delayed and spatially extended
systems [16,32–34,42]. We define the deviation from the
two bifurcation points μ¼ηκ−1 with κ¼�1 as μ ¼ aþ ε2a1
and η ¼ aκ þ b1ε2 and, as detailed in Ref. [42], inserting a
multiple time scale expansion in Eq. (1) for both the temporal
derivative and the delayed term, and defining Ψ ¼ εψþ
Oðε2Þ, one obtains the following equivalent partial differ-
ential equation as a third order solvability condition

∂ψ
dn

¼ pψ þ β

a
ψ2 þ ψ3

a
þ 1

2a2
∂2ψ

∂x2 ð3Þ

with p ¼ −ða1 − κb1Þ=a. Although strictly valid in the
vicinity of the bifurcation points, such normal forms are
known to have a wider domain of validity, see the discussion
before Eq. (8a) in Ref. [16]. In Eq. (3), the spatial coordinate
(x) must be understood as a local time coordinate within the

round-trip while the slow time (n) represents the evolution of
the temporal profile from one round-trip to the next. Besides,
we factored out a drift velocity defined as υ ¼ a−1 as in
Refs. [23,33], representing the small deviation of the period
with respect to the time delay. Equation (3) must be
complemented by a boundary condition that reads

ψðxþ 1; nÞ ¼ −κψðx; nÞ ð4Þ

and defines, as in Eq. (2), whether or not the solution
gets inverted from one round-trip to the next. For
β ¼ 0 and a < 0, the heteroclinic orbits of Eq. (3) read
K�ðxÞ ¼ � ffiffiffiffiffiffiffiffiffijajpp

tanh ðjaj ffiffiffiffi
p

p
xÞ, where the � stands for

the upward and downward domainswalls. In deriving Eq. (1)
we assumed that the symmetry breaking term β scales as ε to
enter as a perturbation of the solvability condition. Yet,
although small, β has a deep impact upon the dynamics.
We depict in Fig. 1(a) an initial condition for Eq. (1)

composed of an arbitrary succession of domains with values
corresponding to the plateaus of theP1 or of theP2 regimes.
In theP1 case (κ ¼ −1) as visible in Figs. 1(b) and 1(c), this
multiplateau pattern relaxes in a finite time to the upper
(lower) value when β < 0 (β > 0). Such a coarsening
scenario is very general and it is preserved quite far from
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FIG. 1 (color online). Illustration of dynamics in space-time
diagrams. These space-time diagrams are folded over a time
T ¼ τ þ jηj−1. (a) Temporal pattern imposed as an initial con-
dition. The P1 regime where κ ¼ −1 leads to the coarsening
dynamics of the temporal time trace depicted in (b) and (c) to-
wards the high and low states when β ¼ −10−2 (b) and β ¼ 10−2

(c), respectively. Other parameters are τ ¼ 103, η ¼ 5 × 10−2,
and μ ¼ 2.5 × 10−2, or equivalently a ¼ −5 × 10−2, b1 ¼ 0, and
a1 ¼ 7.5 × 104. The P2 regime where κ ¼ 1 induces the inver-
sion of the initial condition at each round-trip as exemplified by
the checkerboard pattern in (d). It does not coarsen over longer
time scales even for very large values of the asymmetry β ¼ 0.1.
The time trace is folded over times T in (e) and also 2T in (f) for
clarity. Parameters are η ¼ −0.2 and μ ¼ −2.5 × 10−2, or equiv-
alently a ¼ −0.2, b1 ¼ 0, and a1 ¼ 17.25 × 104. The temporal
profile is represented in (g). Notice the large values of a1,
signaling that Eq. (3) remains qualitatively valid far from the
bifurcation points.
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the bifurcation conditionμ ¼ −η, and evenwhen the discrete
spectrum is also unstable, i.e., with μ > 0. A multidomain
solution that verifies Eqs. (3) and (4) can be written as

ψðx; nÞ ¼ Kþðx − xþ0 Þ þ K−ðx − x−1 Þ þ � � �
þ K−ðx − x−n Þ −

ffiffiffiffiffiffiffiffiffi
jajp

p
ð5Þ

with fx�n g the ordered collection of the coordinates of the
upward and downward kinks. For jβj ≪ 1, a variational
approach is justified [43], and we insert an ansatz as
ψðx; sÞ ∼ K�½x − x�ðsÞ�. By multiplying Eq. (3) by ∂xK�
and integrating over the spatial coordinate, we find the
effective equation for the motion of an isolated wall as

dx�i
dn

¼ ∓ β

2a
ffiffiffiffiffiffijajp ; ð6Þ

demonstrating that the symmetry breaking term β induces a
splitting of thevelocity of domainwalls of opposed “charge”,
whichwill eventually collide.Notice that thevalueof the drift
can also be found searching for heteroclinic solutions of
Eq. (1) as in Ref. [35]. Both methods neglect the short range,
exponentially decreasing interactions between nearby walls
that are known to be attractive [16,38,43]. This can lead for
β < 0 to a steady state,which is however unstable and cannot
prevent the eventual collision and coarsening. Hence, one
may conclude that it is impossible to store information in a
scalar delayed systemas any symmetrybreakingnonlinearity
leads to a coarsening of the information.
We now demonstrate how a completely different regime

can be obtained exploiting the antiperiodic solutions of
Eq. (1) achieved by simply setting η < 0 to access the
regime where κ ¼ 1. We stress that here, since μ < 0,
bistability is lost and the only steady solution is Ψ ¼ 0.
Surprisingly, stable domains with well defined plateaus can
be obtained even in this regime, although the time trace gets
inverted every round-trip, thereby inducing a periodicity
close to twice the delay value 2τ, see Figs. 1(d)–1(g).
Although the solution inversion is interesting in its own
right, such a behavior can be deduced intuitively from the
singular mapping (2) setting κ ¼ 1. The striking result is
that the domain walls remain motionless, even for large β
values, see Figs. 1(d) and 1(e), where the checkerboard
pattern visually disappears leaving only visible the tran-
sitions. We verified this robustness with other kinds of
symmetry breaking terms, e.g., γmΨm with m ¼ 0 and
m ¼ 4. One can still construct approximate analytic sol-
utions of Eq. (3) where an upward or a downward kink
must be complemented by an opposed kink at a spatial
distance x ¼ 1 in order to fulfill the antiperiodic boundary
condition (4). A similar variational approach allows us to
find the effective equation of motion of an isolated wall

dxi
dn

∼ β

Z
2

0

ð∂xKþ þ ∂xK−ÞðKþ þ K−Þ2dx ¼ 0: ð7Þ

In other words, by inverting at each round-trip, the walls
experience opposed drift velocities that cancel out, explain-
ing why similar results can be found for other kinds of
symmetry breaking nonlinearities. It was also demonstrated
in Ref. [16] that the quadratic term cancels out of Eq. (3)
even if it is large, see Eqs. (A.17) and (A.18) in Appendix A
of Ref. [16] for details. Higher order nonlinearities in
Eq. (1) potentially as large as γm ∼ ε3−m may enter Eq. (3),
but would cancel out similarly in Eq. (7). We conclude that
P2 delayed systems are robust candidates for information
storing as they are impervious to most experimental
imperfections leading to a coarsening.
For a demonstration, we study the case of an injected

semiconductor laser below threshold subject to optical
feedback, as domain stabilization in telecommunication
lasers is very interesting also from an applicative point of
view. Close to, yet below, threshold and in the limit of weak
optical feedback, weak optical injection, small detuning,
and large delay, one can reduce the standard single-mode
rate equations of the semiconductor laser to the following
delayed Ginzburg-Landau equation

_E¼ð1þiαÞðJ− jEj2ÞEþiΔEþYþ ~ηe−iΩEðt−τÞ; ð8Þ

see, for instance, Ref. [23] for details. Here, J denotes the
deviation from threshold of the bias current. The detuning
between the frequency of the injection field ωY of ampli-
tude Y (chosen real by definiteness) and the free running
frequency of the laser scaled by the photon lifetime is Δ,
while ~η and Ω ¼ ωYτ are the amplitude and phase of the
delayed optical feedback, respectively. At steady state
( _E ¼ 0), the output power jEj2 as a function of Y can
present a bistable S-shape response for some parameters.
We work close to the onset of bistability where the
transition from low to high power has a sigmoid shape,
see the blue line in Fig. 2(a).

FIG. 2 (color online). (a) Nonlinear output intensity I ¼ jEj2 as
a function of the injected field Y in blue. The black dots
represents the amplitude of the upper and lower plateau in the
P2 regime. The space-time diagram of the intensity in panel (b) is
folded with a period T ¼ 2τ þ 0.1 and shows the stability of the
domain walls, even in the presence of noise, see also panel (c).
Parameters are α ¼ 2, J ¼ −0.1, Δ ¼ 2.3, ~η ¼ 0.1, and Ω ¼ π.
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Assuming that a P2 solution evolves between two
plateaus whose values are E�, Eq. (8) yields a system of
equations whose solution is represented by the black dots in
Fig. 2(a). Such a diagram suggests that theseP2 regimes are
nascent from two saddle-node bifurcations of limit cycles
and are also connected to the stationary solution (blue line)
by two Andronov-Hopf bifurcations. However, these bifur-
cations are subcritical, meaning that the equivalent partial
differential equation would certainly take the form of a
subcritical cubic-quintic Ginzburg-Landau equation. Notice
that for dynamical systems with a higher number of
variables, as in Eq. (8), additional instabilities like the
Eckhaus mechanism [44] may arise. Yet, Eq. (8) can be
reduced to a single scalar delayed equation for the phase in
the limit of weak feedback and injection using averaging
methods [45].We show indeed in Figs. 2(b) and 2(c) that this
system is capable of storing patterns of domain walls.
The experimental setup is represented in Fig. 3. A

1310 nm Fabry-Perot laser [slave laser (SL)] as used in
telecommunication systems is subject simultaneously to
external optical injection and delayed feedback after a
round-trip time τ ¼ 65.4 ns. The optically injected signal
was generated with a tunable laser [master laser (ML)]. A
polarization controller and a variable optical attenuator
were, respectively, included after the ML to control its
polarization state and optical power level. Figure 3(b) plots
the light-current (LI) curve of the solitary SL, showing a
threshold current of Ith ¼ 4.92 mA. Figure 3(c) depicts the
SL’s input or output power relationship when subject solely
to external injection. The devicewas biased below threshold
with a current of I ¼ 4.85 mA (i.e., I ¼ 0.985Ith) and an
initial frequency detuning (Δf ¼ finj − fFP) equal to
−10 GHz was set between the frequencies of the injected
signal and the resonance frequency of one of the SL modes.

Figure 3(c) illustrates the achievement of a gradual nonlinear
switching response as the injection strength is increased
from0 to 31.5 μW, in agreementwith the results of Fig. 2(a).
The SL was subsequently subjected to simultaneous

optical injection from the ML (input power Pinj ¼ 20 μW)
and delayed feedback. In this situation the system was
operated in the sigmoid range as indicated by the blue
square in Fig. 3(c). The phase of the feedback can be
changed by a small detuning of the injection field
frequency. The large values of the time delay allow
considering these two parameters to be independent.
Figure 4(a) plots the time trace over five round-trips

(327 ns). Figure 4(a) shows that a temporal pattern, which
is inverted every round-trip, is obtained at the device’s
output, in agreement with the predictions of Figs. 1(g)
and 2(c). The equivalent space-time diagrams for the time
series of Fig. 4(a) when the folding parameter is set
approximately to τ and 2τ are plotted, respectively, in
Figs. 4(b) and 4(c) over a time window of 400 round-trips
(i.e., ∼26 μs). Figures 4(b) and 4(c) demonstrate the exper-
imental achievement of antiperiodic dynamical regimes since
peaks and troughs alternate every round-trip, see Fig. 4(b).
More importantly, the results also demonstrate the formation
of stable domains of arbitrary size. The existence of various
noise sources in the system induces a slowdrift of thewalls as

FIG. 3 (color online). (a) Experimental setup. ML, master laser;
PC, polarization controller; VOA; variable optical attenuator; PM,
power meter; FP, Fabry-Perot; CIRC, circulator; PIN, 12 GHz
photodetector; SCOPE, 13 GHz oscilloscope. (b) LI curve of the
SL at T ¼ 293 K. (c) I/O power relationship of the SL under
external injection with Δf ¼ −10 GHz and I ¼ 4.85 mA.

FIG. 4 (color online). Temporal trace of the laser intensity (a) and
space-time diagram with folding parameter τ (b) and 2τ (c).

FIG. 5 (color online). Same as Fig. 4. A new pair of domain
wall is nucleated at n ¼ 128 in panel (a) and remains stable while
for different parameters bistable phase coarsening occurs.
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seen in Fig. 4(c), but not a coarsening if the walls remain at a
sufficiently large distance, in good agreement with theory.
Of note, we observed the nucleation of domain wall pairs

after the arrival of an electrical perturbation into the system
as shown in Fig. 5(a) at n ¼ 128. Additionally, a small
change of the injection parameters allows us to observe in
Fig. 5(b) the coarsening mechanism of the P1 solutions, as
in Ref. [35].
In conclusion, we described in this Letter how a general

property of delayed systems can be harnessed to prevent the
domain coarsening in symmetry broken delayed systems,
thereby allowing the storing of information. Such antiper-
iodicity has no equivalent in real spatially extended
systems. We evidenced the existence of stable domains
in the coherent output of a semiconductor laser with optical
feedback. These results offer exciting prospects for the
controllable encoding of information.
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