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In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system made
of ultracold bosonic dipolar molecules with large magnetic dipole moments. Our dipolar molecules are
formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic erbium
atoms. We show that the ultracold magnetic molecules can carry very large dipole moments and we
demonstrate how to create and characterize them, and how to change their orientation. Finally, we confirm
that the relaxation rates of molecules in a quasi-two-dimensional geometry can be reduced by using the
anisotropy of the dipole-dipole interaction and that this reduction follows a universal dipolar behavior.
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Ultracold dipolar particles are at the heart of very intense
research activities that aim to study the effect of interactions
that are anisotropic and long range [1,2]. Dipolar quantum
phenomena require ultracold gases and a strong dipole-
dipole interaction (DDI). So far, strongly dipolar gases have
been obtained using either atoms with a large magnetic
dipole moment or ground-state polar molecules with an
electric dipole moment [2]. With both systems, many
fascinating many-body quantum effects have been observed
and studied, such as the d-wave collapse of a dipolar Bose-
Einstein condensate [3,4], the deformation of the Fermi
sphere [5], and the spin-exchange phenomena [6,7].
Here, we introduce a novel kind of strongly dipolar

particles. These are weakly bound dipolar molecules
produced from a pair of atoms with large magnetic dipole
moments, such as erbium (Er). The central idea is that these
molecules can possess a very large magnetic moment μ up
to twice that of atoms (e.g., 14 Bohr magneton, μB, for Er2)
and have twice the mass of the atoms. As a consequence,
the degree of “dipolarity” of the magnetic molecules is
much larger than the one of atoms. This can be quantified in
terms of the dipolar length ad ¼ mμ0μ

2=ð4πℏ2Þ [1], which
solely depends on the molecular mass m and on μ; ℏ is the
Planck constant divided by 2π. To give an example, Er2
with μ ¼ 14μB has an ad of about 1600 a0, which largely
exceeds the typical values of the s-wave scattering length.
Here, a0 is the Bohr radius. Moreover, in contrast to
ground-state heteronuclear molecules, the dipole moment
of the magnetic molecules does not vanish at zero external
(magnetic) field, opening the intriguing possibility of
investigating the physics of unpolarized dipoles.
In a joined experimental and theoretical effort, we study

the key aspects of ultracold dipolar Er2 molecules,
including the association process, the molecular energy

spectrum, the magnetic dipole moments, and the scatter-
ing properties in both three- (3D) and quasi-two-
dimensional (Q2D) geometries.
Erbium belongs to the class of strongly magnetic

lanthanides, which are currently attracting great attention
in the field of ultracold quantum gases [4,8–10]. Indeed,
these species exhibit unique interactions. Beside the long-
range magnetic DDI, these species have both an isotropic
and an anisotropic contribution in the short range van der
Waals (vdW) potential. The latter results from the large
nonzero orbital momentum quantum number of the atoms
[11,12]. This manifold leads to an extraordinary rich
molecular spectrum, reflecting itself in a likewise dense
spectra of Feshbach resonances as demonstrated in recent
scattering experiments [4,13,14]. Each resonance position
marks an avoided crossing between the atomic scattering
threshold and a molecular bound state, which can be used
to associate molecules from atom pairs [15].
We create and probe Er2 dipolar molecules by using

standard magnetoassociation and imaging techniques [15].
Details of the production schemes are described in the
Supplemental Material [16]. In brief, we begin with an
ultracold sample of 168Er atoms in an optical dipole trap
(ODT) in a crossed-beam configuration. The atoms are spin
polarized into the lowest Zeeman sublevel (j ¼ 6,
mj ¼ −6). Here, j is the atomic electronic angular momen-
tum quantum number and mj is its projection on the
quantization axis along the magnetic field. To associate
Er2 molecules, we ramp the magnetic field across one of the
low-field Feshbach resonances observed in Er [4,13]. We
experimentally optimize the ramping parameters, such as
the ramp speed and the magnetic-field sweep interval, by
maximizing the conversion efficiency. In our experiment
we typically achieve a conversion efficiency of 15%, which
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is a common value for boson-composed Feshbach mole-
cules [15]. To obtain a pure molecular sample, we remove
all the remaining atoms from the ODT by applying a
resonant laser pulse. Our final molecular sample contains
about 2 × 104 Er2 Feshbach molecules at a temperature of
300 nK and at a density of about 8 × 1011 cm−3 [16].
A central question regards the magnitude of the dipole

moment owned by the magnetic molecules. We experi-
mentally determine μ by using magnetic-field modulation
spectroscopy, a technique which was successfully applied
to alkali atoms [20–22]. With this method, we measure the
molecular binding energy Eb near the atomic threshold as a
function of the magnetic field B. The binding energy is
related to the differential magnetic moment of the mole-
cules with respect to the atom-pair magnetic moment 2μa.
Here, μa ¼ −gmjμB ¼ 6.98μB in the case of Er, where g ¼
1.16 is the Er atomic Landé factor. We thus extract μ by
using the relation μ ¼ 2μa − jdEbðBÞ=dBj. Our spectro-
scopic measurement begins with an ultracold atomic sample
near a Feshbach resonance. We then add a small sinusoidal
modulation to the bias magnetic field for 400 ms. The
modulation frequency is varied at each experimental run.
When it matches Eb=h, prominent atom losses appear
because of molecule formation. We trace the near-threshold
molecular spectrum by repeating the measurement for
various magnetic-field values. Figure 1 shows the Er2
molecular spectrum in a magnetic-field range up to 3 G.
In our range of investigation, we identify four molecular
energy levels, which, near threshold, exhibit a linear depend-
ence on B. For each state, we obtain a different μ value,
ranging from 8 to 12μB [23], as listed in Table I.
For alkali-metal atoms, which possess much simpler

interaction properties than lanthanides, theoretical
approaches based on coupled-channel calculations have
been extremely successful in assigning the quantum num-
bers of the molecular energy levels and reproducing
molecular spectra [15]. However, a straightforward exten-
sion of these methods to the lanthanide case is out of reach
because of their complex scattering physics involving

highly anisotropic interactions and many partial waves
[13]. Inspired by work on alkali-metal collisions [24–27],
we develop a new theoretical approach to identify the
molecular quantum numbers, based on approximate adia-
batic potentials and on the experimentally measured μ as
input parameters. Our scattering model is detailed in the
Supplemental Material [16], whereas we here summarize
the central ideas of our approach.
We first solve the eigenvalue problem of the full atom-

atom interaction potential operator [16], whose eigenvalues
are the adiabatic potentials UnðR;BÞ. The corresponding
eigenfunctions read as jn;Ri ¼ P

icn;iðRÞjii, where
n ¼ 1; 2;…, and cn;iðRÞ are R-dependent coefficients.
The molecular state jii is uniquely determined by the set
of angular momentum quantum numbers (l, J, M), where

l is the molecular orbital quantum number, ~J ¼ ~j1 þ ~j2 the
total atomic angular momentum, and M its projection on
the internuclear axis.
To derive the corresponding “adiabatic” molecular mag-

netic moments, we calculate μcalc ≈ −dUnðR;BÞ=dB at the
position of the outer classical turning point R ¼ R�. This
choice is justified by the fact that most of the vibrational
wave function is localized around R�.
From the Hellmann-Feynman theorem it then follows

that μcalc ¼ −gμB
P

iMijciðR�Þj2. Finally, we assume that
for each Feshbach resonance a vibrational state is on
resonance and we find the adiabatic potential that has a
magnetic moment closest to the measured one within 1%.
Once the best match is identified, the corresponding jn;Ri
sets the molecular state jii, characterized by l, J, and M,
with the largest, dominant contribution. In our range of
investigation we observe d-, g-, and i-wave molecular
states; see Table I. These states show several dominant M
contributions. This fact is unusual and reflects the dominant
role of the DDI, which couples several adiabatic potentials
and M components. As shown in Fig. 2, this mixing effect
is particularly dominant below 10 G, where the DDI at R� is
larger than the Zeeman interaction. Above 10 G, we predict
μ to be equal to integer multiples of gμB [16].
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FIG. 1 (color online). Er2 weakly bound molecules. (a) Atom-
loss spectrum [4] from 0 to 3 G and (b) near-threshold binding
energy of the corresponding molecular states. The solid lines are
fits to the experimental data and extrapolated to larger Eb up to
h × 500 kHz. The error bars are smaller than the symbols.

TABLE I. Experimental (Expt.) and theoretical (Theo.) mag-
netic moments of four molecular states near the atomic threshold,
Feshbach-resonance positions BFR, dipolar lengths, outer turning
points R�, and dominant quantum numbers l, J, and M. For
convenience, the molecular states are labeled as μi with
i ¼ 1;…; 4. The specified uncertainties correspond to the 1σ
statistical errors.

BFR μ=μB ad R�
jl; J;Mi(G) Expt. Theo. (a0) (a0)

μ1 0.91 11.30(7) 11.20 1041(13) 72.0 j4;12;−12=−10=−9i
μ2 2.16 11.51(4) 11.46 1080(8) 71.0 j4; 10;−10i
μ3 2.44 11.84(2) 11.75 1143(4) 86.0 j2; 12;−10i
μ4 2.47 7.96(3) 7.92 517(4) 57.0 j6; 10;−7= − 6i
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As summarized in Table I, we find very good overall
agreement between the measured and the calculated
molecular magnetic moments. For the largest observed μ,
we calculate a corresponding dipolar length, ad ≈ 1150a0.
This value exceeds the typical range of the vdW potentials,
setting the DDI as the dominant interaction in the system.
Remarkably, ad for Er2 is comparable to the one realized
with ground-state KRb molecules [28], which are an
extensively investigated case serving as a benchmark dipolar
system.
Following the methods introduced for KRb [29–31], we

test the dipolar character of Er2 by performing scattering
experiments in a 3D and in a Q2D optical dipole trap. We
control the DDI between molecules by tuning the dipole
orientation, which is controlled by changing the direction
of the magnetic field and is represented by the angle θ
between the magnetic-field axis and the gravity axis. Our
experiment begins with the atomic sample trapped either in
a 3D or in a Q2D ODT. The Q2D trap is created by
superimposing a vertically oriented, one-dimensional opti-
cal lattice [16]. After the magnetoassociation and the
removal of the remaining atoms, we probe the number
of molecules as a function of the holding time in the ODT.
We perform measurements for the molecular states μ1, μ2,
and μ4 [32]. For each of these states, we measure the
collisional stability of the sample for both in-plane
(θ ¼ 90°) and out-of-plane (θ ¼ 0°) dipole orientation,
and extract the corresponding relaxation rate coefficients,
β⊥ and β∥, using a standard two-body rate equation [33].
Figure 3 shows typical molecular decay curves in

(a) 3D and in (b) Q2D. In 3D, we confirm that the

inelastic decay does not depend on θ. We obtain
β3D ¼ 1.3ð2Þ × 10−10 cm3=s. This is a typical value for
boson-composedFeshbachmolecules,which undergo a rapid
vibrational quenching into lower-lying molecular states, as
demonstrated with alkali atoms [33]. Contrary, in Q2D the
decay rates clearly depend on the dipole orientation. For each
investigated molecular state, β⊥ is larger than β∥. We find a
reduction of losses of up to 30% for out-of-plane orientation,
for which the DDI is predominantly repulsive. The ratio
ðβ⊥ðTÞ=β∥ðTÞÞ increases with increasing μ; see Table II. We
note that stronger suppression of losses can be obtained using
a tighter two-dimensional confinement [29], which is pres-
ently not reachable with our experimental parameters.

0 2 4 6 8 10 12 14
magnetic field (G)

6

7

8

9

10

11

12

13

14

15
μ

/μ
B

μ/μB = -M g = 13.97

12.80

11.64

10.47

9.31

8.15

6.98

FIG. 2 (color online). Adiabatic magnetic moment as a function
of magnetic-field strength evaluated at the entrance channel
energy. Each curve corresponds to the adiabatic magnetic moment
of one adiabatic potentialUnðR;BÞ. The magnetic moments in the
asymptotic limit of large B are given. The dashed vertical lines
correspond to the field strength wherewe have observed Feshbach
resonances. The red-filled circles represent the experimentally
measured magnetic moments at these resonance locations.
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FIG. 3 (color online). Typical time evolution of the number of
molecules for θ ¼ 90° (squares) and θ ¼ 0° (circles) in a 3D (a)
and in a Q2D trap (b). The data refer to molecules in the state μ1
for the 3D case (a) and molecules in the state μ2 in Q2D (b). The
insets in (b) show an illustration of molecules in pancake-shaped
traps with out-of-plane (right) and in-plane (left) orientations.
The solid lines are two-body decay fits to the data. The error bars
for (a) and (b) are smaller than the data points and are not shown.
The data points in (a) are obtained by averaging five independent
measurements and in (b) about 50 measurements have been
averaged.

TABLE II. Experimental and theoretical loss rate coefficients β
for T ¼ 400 nK and for various μ and θ at B ¼ 200 mG.
Uncertainties of β are statistical from fitting and systematic
due to number density uncertainty. For the slightly different
values of μ compared to Table I and the error discussion see the
Supplemental Material [16].

μ=μB

β⊥ð10−6 cm2=sÞ β∥ ð10−6 cm2=sÞ
Expt. Theo. Expt. Theo.

μ4 8.7(6) 12.5� 0.3� 3.3 6.00 10.6� 0.3� 2.8 4.79
μ1 10.9(5) 9.5� 0.2� 2.5 6.81 7.3� 0.1� 2.1 5.07
μ2 11.7(3) 11.3� 0.2� 2.9 7.12 8.6� 0.2� 2.3 5.13
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The reduction of losses in Q2D draws a natural analogy
with the observations obtained with KRb molecules [31].
From a comparative analysis between Er2 and KRb, one
can unveil universal behavior attributed to the DDI, for
systems being different in nature, but sharing a similar
degree of dipolarity. We thus theoretically study the
scattering behavior of Er2 using a theoretical approach
similar to the one successfully applied to KRb. Our
formalism, which accounts for the DDI and the isotropic
vdW interaction, is described in Refs. [16,34].
We compute the Er2 þ Er2 loss rate coefficients βðTÞ in

3D and in Q2D for given values of μ, θ, and T. By
averaging over a 3D and a 2D Maxwell-Boltzmann dis-
tribution, we obtain the thermalized loss rate coefficients
βðTÞ in 3D and in Q2D, respectively. In 3D, we find a rate
coefficient of 1.0 × 10−10 cm3=s at T ¼ 300 nK, which is
close to the experimental value [35]. In Q2D, our calcu-
lations show that the collision dynamics at long range, and
thus the value of β, depends on the dipole orientation and
monotonically increases with μ. As in the experiments, our
calculations show that collisions for in-plane orientation
(β⊥) lead to larger molecular losses than for out-of-plane
orientation (β∥). In Table II, we compare theory and
experiment. The absolute values of β agree within a
factor of 2. This difference is well explained by the fact
that our model does not include details of the short-range
physics, with the Er4 potential energy surfaces currently
unknown [16].
Remarkably, the experimental and calculated ratios

β⊥ðTÞ=β∥ðTÞ agree very well with each other; see
Fig. 4. This suggests that β⊥ðTÞ=β∥ðTÞ for Er2 Feshbach
molecules is determined by the DDI and not by the short-
range physics, and that it can be correctly described using a
point-like-dipole formalism [16]. Figure 4 shows the
comparative analysis between bosonic 41K87Rb and
168Er2, and fermionic 40K87Rb and 167Er168Er based on

our numerical calculations. Independent of the nature of the
magnetic or electric dipolar system, we find universal
curves as a function of ad= ~a: one for bosons with ~a ¼
aho and one for fermions when ~a ¼ avdW. Here, aho is the
harmonic oscillator length and avdW ¼ ð2mC6=ℏ2Þ1=4 is the
vdW length with C6 the vdW coefficient. The faster
increase of β⊥=β∥ for fermions with respect to bosons is
due to the statistical fermionic suppression of β∥ in Q2D
that does not occur for bosons as explained in Ref. [36].
The universal behavior of ultracold dipolar scattering has

been previously pointed out in Ref. [37]. In the Wigner
regime, we derive simple universal scaling laws for dipolar
bosonic and fermionicmolecules [16,37]. For bosonswithad,
aho > avdW, which is the case of our Er2 molecules, we find
½β⊥ðTÞ=β∥ðTÞ�∼ðadB=ahoÞ4ðad=ahoÞexp½2ðad=ahoÞ2=5�. For
fermionswith ad, avdW < aho, ðβ⊥=β∥Þ ∼ ðad=avdWÞ3. Here,
adB ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πmkBT

p
is the thermal de Broglie wavelength.

To conclude, our work reports on the study of strongly
dipolar molecules created by pairing ultracold atoms with
large magnetic dipole moments. We anticipate that our
scheme can be generalized to other magnetic lanthanide
species and has the potential to open regimes of inves-
tigations, which have been unaccessible so far. First, the
extraordinarily dense and rich molecular energy spectrum
of Er opens the exciting prospect of cruising through
molecular states of different magnetic moments or even
creating molecular-state mixtures with dipole imbalance
[22,38,39]. Second, in contrast to electric polar molecules
where the electric dipole moment is zero in the absence of a
polarizing electric field, magnetic dipolar molecules have a
permanent dipole moment allowing us to study the physics
of unpolarized dipoles. In addition, strongly magnetic
Feshbach molecules offer a novel case of study for
scattering physics. These molecules are in fact diffuse in
space with a typical size on the order of the vdW length.
This novel situation can also have interesting consequences
and trigger the development of extended scattering models,
which account for multipolar effects and truly four-body
contributions when the molecule size becomes comparable
to ad [40]. Finally, a very promising development will be to
create fermionic Er2 dipolar molecules where vibrational
quenching processes are intrinsically suppressed because of
the Pauli exclusion principle [41,42].
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