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We present models where γþ and γ−, the exponents of the susceptibility in the high- and low-temperature
phases, are generically different. In these models, continuous symmetries are explicitly broken down by
discrete anisotropies that are irrelevant in the renormalization-group sense. TheZq-invariant models are the
simplest examples for two-component order parameters (N ¼ 2) and the model with icosahedral symmetry
for N ¼ 3. We accurately compute γþ − γ− as well as the ratio ν=ν0 of the exponents of the two correlation
lengths present for T < Tc.
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The question of the equality of the critical exponents on
the two sides of a second-order phase transition has,
apparently, not been raised for decades. The general
renormalization group (RG) argument “showing” their
equality goes as follows: Correlation functions are regular
in the presence of an external field, which is sufficient to
proceed continuously from one phase to the other.
Moreover, if these functions satisfy the same RG equations
above and below the critical temperatureTc, the same should
hold true for the scaling behavior of quantities such as the
susceptibility, the correlation length, or the specific heat.
Since the renormalization properties of a theory are identical
in its symmetric and spontaneously broken phases, it follows
that the critical exponents are identical in both phases (see,
for instance, [1–3]). This is indeedwhat happens generically.
To the best of our knowledge, Nelson [4] was the first to

propose a counterexample based on the Oð2Þ model in
dimension d ¼ 3, to which is added either a cubic (CA)
[4–12] or hexagonal (HA) anisotropy [4–6]. These anisot-
ropies are taken into account in the Ginzburg-Landau
Hamiltonian by terms of order 4 and 6, respectively, which
are irrelevant in the RG sense at the transition. The
corresponding fixed point is thus Oð2Þ symmetric.
However, Nelson argued [4] that they are dangerously
irrelevant [6,13] in the low-temperature phase and that
they, therefore, induce a modification of the exponent γ− of
the susceptibility. A rather counterintuitive result is that the
difference γþ − γ− is larger for HA than for CA, whereas
HA is “more irrelevant” than CA. A detailed study of the
literature shows that, up until now, this striking result has
been completely ignored.
Because of its relationship with either deconfined quan-

tum critical points [14] or pyrochlore [15] and the possible
existence of two distinct phase transitions [16], the three-
dimensional XY model with HA (and, more generally, the
Zq-invariant models) has recently been studied again
[17,18]. Although only one transition has been found,

the Zq models were shown to exhibit two correlation
lengths below Tc, ξ and ξ0, that scale with two different
critical exponents, ν and ν0. All authors agree that ν=ν0
depends on the scaling dimension of the irrelevant HA
term, but there are no less than three different scaling
relations predicting this ratio, as well as several values
obtained by Monte Carlo simulations [14,17,18].
In this Letter, we present a mechanism, valid not only for

the XY case, to generate different critical exponents above
and below Tc. The mechanism relies on the possibility of
explicitly breaking a continuous symmetry down to a
discrete one by terms that are irrelevant in the RG sense.
In addition to theZq-invariant models, we build an example
for Heisenberg spins showing icosahedral symmetry. Using
the nonperturbative renormalization group (NPRG), it
is—contrary to perturbation theory—easy to show that
the exponents γþ and γ− are generically different for these
models and easy to compute them, as well as ν=ν0,
accurately. Our approach allows us to completely clarify
the physics of these models.
Let us discuss the general idea underlying the difference

between γþ and γ−. For concreteness, we consider a XY
or Heisenberg model described by an OðNÞ-invariant
Hamiltonian (HOðNÞ), to which is added a discrete
anisotropy term τðxÞ,H ¼ HOðNÞ þ λan

R
x τðxÞ. We assume

that τðxÞ is irrelevant in d ¼ 3. The fixed point (FP)
describing the phase transition is therefore OðNÞ symmet-
ric (λFPan ¼ 0). If this term were irrelevant in the ordinary
sense—that is, could be neglected (λan ¼ 0)—the model
would be identical to the OðNÞ model. It is important to
remember that, in this case, not only the transverse (χT) but
also the longitudinal (χL) susceptibilities diverge for all
T < Tc because of the Goldstone modes [19–21].
However, since the symmetry is discrete when λan ≠ 0,
there are no Goldstone modes and the susceptibilities
cannot diverge for T < Tc. Thus, χ−1T vanishes only at
Tc, and its scaling with ΔT ¼ T − Tc obviously depends
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on the way λan scales to zero close to the fixed point. Since
this scaling is given by the scaling dimension of τðxÞ, the
exponent γT defined by χ−1T ∼ ðTc − TÞγT for T < Tc
cannot be equal to γþ. This is why τðxÞ is said to be
dangerously irrelevant for T < Tc. The same holds true
for χ−1L .
Let us now give two examples, with N ¼ 2 and 3, of the

kind of anisotropy that produces a difference between γþ
and γT;L. We choose discrete subgroupsG of eitherOð2Þ or
Oð3Þ. These subgroups must satisfy two constraints. First,
in order to have only one phase transition, there must exist
only one invariant quadratic polynomial of G. Therefore,
it must be φiφi, i ¼ 1;…; N, as in the OðNÞ model.
Second, the interaction term that explicitly breaks the
OðNÞ symmetry must be irrelevant. A term of order 4
can be irrelevant compared to the OðNÞ-invariant term
ðφiφiÞ2. For N ¼ 2 and d ¼ 3, this is the case, for instance,
of the term φ4

1 þ φ4
2 of cubic anisotropy. For reasons that

are explained below, this kind of term, being “weakly
irrelevant,” induces only small differences between γþ and
γT;L that, moreover, require very large systems to be
observable. We therefore prefer to consider terms that
are “strongly irrelevant,” because they are of degrees higher
than 4.
For N ¼ 2, all the Zq-invariant models (q-state clock

models) with q > 4 satisfy the two conditions above
because the first invariant polynomial in φi that is not
Oð2Þ symmetric is of degree q. For instance, for Z6, this
invariant reads τ ¼ 6φ5

1φ2 þ 6φ1φ
5
2 − 20φ3

1φ
3
2 [6,22].

For N ¼ 3, the situation is more constrained because
only the icosahedral group satisfies the two conditions
above [23]. For all the other discrete subgroups ofOð3Þ, the
first invariant polynomials that are not Oð3Þ symmetric
are of degree 4 and, therefore, are at best only weakly
irrelevant. For the icosahedral symmetry, the first non-
Oð3Þ-symmetric invariant polynomial is of degree 6 and
reads [23,24]

τ ¼ ð4Φ − 2Þðφ2
1 − φ2

2Þðφ2
2 − φ2

3Þðφ2
3 − φ2

1Þ
þ 22ðφ1φ2φ3Þ2 þ ðφ4

1 þ φ4
2 þ φ4

3Þðφ2
1 þ φ2

2 þ φ2
3Þ;
ð1Þ

where Φ is the golden ratio [25].
The NPRG is based on Wilson’s idea of integrating

fluctuations step by step [26]. In its modern version, it is
implemented on the Gibbs free energy Γ [27–29]. A one-
parameter family of models indexed by a scale k is thus
defined such that only the rapid fluctuations, with wave
numbers jqj > k, are summed over in the partition function
Zk. The decoupling of the slow modes (jqj < k) in Zk is
performed by adding to the original Hamiltonian H a
quadratic (“masslike”) term which is nonvanishing only for
these modes:

Zk½J� ¼
Z

Dφ expð−H½φ� − ΔHk½φ� þ J · φÞ; ð2Þ

with ΔHk½φ� ¼ 1
2

R
q Rkðq2ÞφiðqÞφið−qÞ—where, for in-

stance, Rkðq2Þ ¼ Zkðk2 − q2Þθðk2 − q2Þ, with θ the step
function and Zk the field renormalization constant—
and J · φ ¼ R

x JiðxÞφiðxÞ. The coarse-grained Gibbs free
energy Γk½ϕ� is defined as the (slightly modified) Legendre
transform of logZk½Ji�,

Γk½ϕ� þ logZk½J� ¼ J · ϕ −
1

2

Z
q
Rkðq2ÞϕiðqÞϕið−qÞ;

ð3Þ

where ϕiðxÞ is the thermal average of φiðxÞ. When k is of
the order of the inverse lattice spacing Λ, all fluctuations in
Zk are frozen by the Rk term and the mean-field approxi-
mation becomes exact. With the definition (3), this implies
that Γk¼Λ½ϕ� ¼ H½ϕ� [27]. Since Rk¼0ðq2Þ≡ 0, Γk¼0½ϕ� ¼
Γ½ϕ� and is, thus, the free energy that we want to compute.
The exact flow equation of Γk reads [27] (see

Supplemental Material [30] for more details)

∂tΓk½ϕ�¼
1

2
Tr½∂tRkðq2Þ(Γð2Þ

k ½q;−q;ϕ�þRkðqÞ)
−1�; ð4Þ

where t ¼ logðk=ΛÞ, Tr stands for an integral over q and a
trace over group indices, and Γð2Þ

k ½q;−q;ϕ� is the matrix of
the Fourier transforms of the second functional derivatives
of Γk½ϕ� with respect to ϕiðxÞ and ϕjðyÞ.
Since it is impossible to solve Eq. (4) exactly, we must

make use of approximations. To capture the critical
physics, the simplest nonperturbative approximation is
the derivative expansion [31,32]. We use the (improved)
lowest order, the local potential approximation prime
(LPA’), which consists of retaining only a potential term
in Γk½ϕ� together with a field renormalization constant Zk in
front of the kinetic term [31,32],

ΓLPA0
k ½ϕ� ¼

Z
x

�
1

2
Zk½∇ϕiðxÞ�2 þ Uk(ϕiðxÞ)

�
: ð5Þ

The running potential Uk is defined by ΩUkðϕiÞ ¼
Γk½ϕi�, where the fields ϕi are constant and Ω is the
volume of the system. Its flow is obtained from Eq. (4),
where Γð2Þ

k is computed from (5) and is then evaluated in a
constant field configuration ϕi.
On top of the LPA’, UkðϕiÞ can be expanded around one

of its running minima ϕmin
i;k , which corresponds, at k ¼ 0, to

the stable state of the system when Ji ¼ 0,

Uk ¼
u20;k
2

ðρ − κkÞ2 þ u01;kτ þ
u30;k
3!

ðρ − κkÞ3 þ � � � ;
ð6Þ
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with ρ ¼ ϕiϕi=2 and κk ¼ ϕmin
i;k ϕ

min
i;k =2. The flows of umn;k

and κk are obtained from that of Uk by acting with ∂t on
both sides of their definition,

umn;k ¼
∂mþnUk

∂ρm∂τn
����
ρ¼κk;τ¼0

;
∂Uk

∂ρ
����
ρ¼κk;τ¼0

¼ 0: ð7Þ

We have performed the calculations up to order 12 in the
field-expansion equation (6). However, for the sake of
simplicity, we present below the RG flow obtained for the
XY model with HAwithin the simplest ansatz that includes
only u20;k and u01;k, which we call u and λ6 (we omit the k
index in the following to alleviate the notation). In this case,
ϕmin
i;k corresponds to one of the six minima of Uk; we call

the direction pointing towards ϕmin
i;k longitudinal and the

perpendicular direction transverse. Once diagonalized, Γð2Þ
ij;k

splits as usual into the two inverse longitudinal and trans-
verse propagators that each depend on a (running) “mass”
2uκ and 18λ6κ

2, which we call mL and mT . Finding RG
fixed points requires us to work with dimensionless and
renormalized variables. We thus define ~κ ¼ K−1

d Zkk2−dκ,
~u ¼ KdZ−2

k kd−4u, and ~λ6 ¼ K2
dZ

−3
k k2d−6λ6, where K−1

d ¼
dΓðd=2Þ2d−1πðd=2Þ has been included for convenience. The
flow equations read (see Supplemental Material [30] for
more details)

∂t ~κ ¼ ð2 − d − ηkÞ~κ þ
�
1

2
þ 18~κ~λ6

~u

�
I2ð ~m2

TÞ þ
3

2
I2ð ~m2

LÞ;

ð8aÞ

∂t ~u ¼ ðd − 4þ 2ηkÞ ~u − 18~λ6I2ð ~m2
TÞ þ 9~u2I3ð ~m2

LÞ
þ ð ~uþ 36~κ~λ6Þ2I3ð ~m2

TÞ; ð8bÞ

∂t
~λ6 ¼ ð2d−6þ 3ηkÞ~λ6þ15~λ6ð ~uþ 6~κ~λ6Þ

I2ð ~m2
TÞ− I2ð ~m2

LÞ
~m2
L− ~m2

T
;

ð8cÞ
with InðxÞ¼2ð1þxÞ−n½1−ηk=ðdþ2Þ�, ~m2

L ¼ 2~u ~κ, ~m2
T ¼

18~λ6 ~κ
2. The running anomalous dimension is defined by

ηk ¼ −∂t logZk which tends, at criticality, to the anoma-
lous dimension η for k → 0 [31,32]. We show its flow in
Fig. 1(a).
The flow equations (8) are very simple, though they are

nonperturbative. They show two crucial features. First, they
automatically take into account the role of the masses mL;T

and their decoupling: as long as k≳mL;T , that is, 1≳ ~mL;T ,
the contributions coming from Inð ~m2

LÞ [Inð ~m2
TÞ] are non-

vanishing; they become negligible when k ≪ mL;T , and the
longitudinal (transverse) mode is then said to decouple
from the flow. Second, once generalized to arbitraryN, they
reproduce the low-T expansion of the OðNÞ nonlinear-
sigma model at one loop in d ¼ 2þ ϵ (when λ6 ¼ 0) and

are also one-loop exact in d ¼ 4 − ϵ [32,33]. Gathering all
these properties in a single set of flow equations is out of
reach of the usual perturbative expansions.
Equations (8) admit three fixed points (with noninfinite

couplings ~u and ~λ6) as shown in Fig. 1. The NG FP has
coordinates ~u�NG ¼ 2 − d=2, ~λ�6;NG ¼ 0, ~κ�NG ¼ ∞. By inte-
grating Eqs. (8) in d ¼ 3 with different initial conditions,
we find the RG trajectories shown in Fig. 1(b). For T < Tc,
λ6 and κ reach fixed, nonvanishing values for k≲ ξ−1. This
is why the dimensionful inverse transverse susceptibility
χ−1T stops running beyond this scale, see Fig. 1(c). The
dimensionless analogues of these couplings, ~λ6 and ~κ, keep
running according to their canonical dimension. Thus, for
k ≪ ξ−1,

~κðkÞ ∼ ~κðξ−1ÞðkξÞ2−d ∼ ~κ�XYðkξÞ2−d;
~λ6ðkÞ ∼ ~λ6ðξ−1ÞðkξÞ2d−6 ∼ ~λin6 ξ

−jy6jðkξÞ2d−6; ð9Þ

where y6 is the scaling exponent of ~λ6 and ~λin6 is the initial
value of ~λ6, that is, its value at the scale of the inverse lattice
spacing. As for ~u, we find in d ¼ 3, for T slightly below Tc,
five different regimes represented on Fig. 1(d). In region
(v), ~u diverges and u reaches a finite value.
The values of k at which the RG flow departs, respec-

tively, from the XY and NG FP define two length scales
called ξ and ξ0, see Fig. 1. The first one, ξ, is the Josephson
length (the correlation length of the amplitude mode) of the
pure Oð2Þ model [34] [the anisotropy plays no role in part

(a) (b)

(c) (d)

FIG. 1 (color online). XY model with HA in d ¼ 3. (a) Flow for
T < Tc of the running anomalous dimension. (b) Projections of
RG trajectories in the ~u − ~λ6 plane. G, XY and NG are the
Gaussian, critical Oð2Þ, and low-temperature (Nambu-Gold-
stone) fixed points. (c) Flows for T < Tc of the inverse transverse
and longitudinal susceptibilities. The dashed line represents the
flow of χ−1L in the pure Oð2Þ model. (d) Flow of ~u for T < Tc
showing its five different regimes. The two plateaus correspond to
the vicinity of the XY and NG FP.
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(ii) of the flow, see Fig. 1(d), when ξ is large because
~λ6ðk ∼ ξ−1Þ ≪ 1]. As long as the RG trajectory remains
close to NG, the flows of ~u and ~κ remain similar to the flows
of the Oð2Þ model in the low-T phase [region (iv) in
Fig. 1(d)], and χ−1L decreases as it does in the pure Oð2Þ
model where the fluctuations of the Goldstone modes
make it vanish, see Fig. 1(c). However, because ~λ6 ≠ 0,
the flow departs from the NG FP [14,17]; uðkÞ stops
flowing, as does χ−1L , see Fig. 1(c). This occurs when
~m2
Tðk ¼ ξ0−1Þ≃ 1, which defines ξ0. This correlation length

diverges at Tc according to ξ0 ∼ ΔT−ν0 , by definition of ν0.
Using the definition of ~m2

T and Eqs. (9), it is now
straightforward to show that

ν0 ¼ νð1þ jy6j=2Þ: ð10Þ
This relation was already obtained in [18], although we do
not fully agree with its derivation [35]. The derivation
above shows that ν0 is universal, contrary to what is
suggested in [15].
The scaling relations among exponents are readily

derived from the discussion above and the usual scaling
behavior of the potential,

U ¼ sdU(s−1=νΔT; ~uðsÞ; ~λ6ðsÞ;…; ~ϕZðsÞ1=2); ð11Þ
where s is a rescaling factor, the dots stand for the infinite
set of irrelevant couplings, and ZðsÞ is the field renorm-
alization factor. ZðsÞ ∼ s−dþ2−ηXY for s ∼ ðξΛÞ−1, where ηXY
is the anomalous dimension at the XY FP, and ZðsÞ ∼ s−dþ2

for s ≪ ðξΛÞ−1 since ηk vanishes away from it (in particular
at the NG FP), see Fig. 1(a). In the low-T phase, by taking
two derivatives of (11) with respect to ~ϕ in either the
transverse or longitudinal directions, and then taking ~ϕ at
the minimum of U, we obtain

χ−1T ∝ sdZðsÞ~λ6ðsÞ~κ2ðsÞ; ð12Þ

χ−1L ∝ sdZðsÞ ~uðsÞ~κðsÞ: ð13Þ

By taking s ∼ ðξΛÞ−1 in Eq. (12) we obtain
γT ¼ γþ þ νjy6j, and by taking s ∼ ðξ0ΛÞ−1 and using
Eqs. (9), (10) we obtain γL ¼ γþ þ ð4 − dÞνjy6j=2 [36].
Notice that the scaling relations derived above for Z6 are
generically valid.
We have computed yq up to order 12 in the field-

expansion equation (6) to obtain converged results, see
Table I. We observe that our value of ν0 for Z6 is very close
to the one deduced from the scaling law [Eq. (10)] and
Monte Carlo simulations in [18]. This validates our
approach. We find, of course, that jyqj increases with q;
we thus deduce the rather counterintuitive result that the
more irrelevant the anisotropy term, the larger the differ-
ence between γþ and γT;L. However, since ξ0 diverges
extremely rapidly close to T−

c for large jyqj, it must
be difficult to observe the scaling behavior of χL in a

finite-size system for “large” values of q. As for χT, its
measurement should not be more difficult than in the pure
Oð2Þ model. Reciprocally, if jyqj is too small, the transient
regime before reaching the XY FP is very large [region (i)
in Fig. 1(d)], and, thus, the corrections to scaling are also
large; this spoils an accurate determination of the leading
scaling behavior in finite-size systems. This is probably the
case for CA in d ¼ 3, where we find jy4j ¼ 0.042 [at six
loops jy4j ¼ 0.103ð8Þ [12]].
We have presented a general mechanism leading to a

large and measurable difference between critical exponents
in the high- and low-T phases and a theoretical approach to
compute them. For the XY case, we have resolved the
existing discrepancies between the results obtained in Zq-
invariant models [14,15,17,18]. Let us also emphasize
that layered decagonal quasicrystals [37,38] showing ten-
fold anisotropies and XY spin systems with HA [4] exist,
which would enable a direct measurement of γT;L − γþ and
ν0. Another very interesting challenge is the possibility of
measuring susceptibilities in Heisenberg systems with
icosahedral anisotropy, possibly in quasicrystals. We recall
that, for N ¼ 3, there are probably many other anisotropies
that are dangerously irrelevant; this likely would lead to
differences between γT;L and γþ that are smaller than in the
icosadrehal case, but that are possibly also measurable.
Finally, it would be extremely interesting to investigate the
two-dimensional [39–48] case with the NPRG approach. At
the price of avoiding any field truncation and working in at
least the second order of the derivative expansion [49–51],
this is reachable. We leave this for future work.
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existence of quasicrystals with tenfold anisotropies, P.
Sindzingre for discussions and clarifications about numeri-
cal issues, A. Rançon for pointing out to us some important
references, and F. Benitez, H. Chaté, N. Dupuis, F. Rose,
M. Tissier, and N. Wschebor for discussions and sugges-
tions regarding the manuscript.
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