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We show how a test of macroscopic realism based on Leggett-Garg inequalities (LGIs) can be performed
in a macroscopic system. Using a continuous-variable approach, we consider quantum nondemolition
(QND) measurements applied to atomic ensembles undergoing magnetically driven coherent oscillation.
We identify measurement schemes requiring only Gaussian states as inputs and giving a significant LGI
violation with realistic experimental parameters and imperfections. The predicted violation is shown to be
due to true quantum effects rather than to a classical invasivity of the measurement. Using QND
measurements to tighten the “clumsiness loophole” forces the stubborn macrorealist to recreate quantum
backaction in his or her account of measurement.
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Introduction.—Making analogies to Bell inequalities [1],
Leggett and Garg (LG) [2] proposed a test for quantum
behavior of macroscopic systems undergoing coherent
evolution. The resulting Leggett-Garg inequalities (LGIs)
aim to distinguish a hypothesized philosophical position of
macrorealism (MR) from quantum physics, and ultimately to
test this position against nature. The MR position holds that
arbitrarily low-disturbance measurements should be pos-
sible, contradicting the Heisenberg uncertainty principle.
To make manifest the LG ideas, several experiments have

tested LGIs. Nearly all experiments have used microscopic
systems, including single photons [3–6], a single photon
stored in a macroscopic quantum memory [7], defects in
diamonds [8,9], nuclear spins [10–13], and cold atoms [14].
See Ref. [15] for a review. To date, two experiments have
tested LGIs on macroscopic systems outside the single-
excitation regime: those by Palacios-Laloy et al. [16] and
Groen et al. [17]. These experiments used superconducting
qubits and showed a significant violation of a LG-like
inequality for weak measurements [18,19].
Because continuous weak measurements record a system

oscillating between two conjugate variables, they perturb
both variables during the multicycle measurement. This
guarantees a disturbance and opens a “clumsiness loop-
hole” [20]: A macrorealist can interpret the LGI violation as
caused by imperfect (from the MR perspective) measure-
ments. As argued by Wilde and Mizel (WM) [20], the
clumsiness loophole cannot be closed, but one can force

the macrorealist to retreat to unlikely scenarios in which
the clumsiness is imperceptible except in the LGI test.
WM considered ideal projective measurements, which can
be well approximated only for microscopic physical quan-
tities. Quantum nondemolition (QND) measurement is a
practical alternative suitable for macroscopic quantities.
A QND measurement has both measurement uncertainty
and disturbance (of the measured variable) near or below
the standard quantum limit [21]. Originally proposed to
detect mechanical oscillations in gravitational wave detec-
tors [22], a strictly defined QND measurement has been
demonstrated in optical [21] and in atomic [23] systems.
Here we show that, in contrast to previous approaches,

QND measurements can test a macroscopic system against a
true LGI, i.e., absent additional assumptions. The approach
closely resembles the original LG proposal and maximally
tightens the clumsiness loophole. Using the collective
quantum variable formalism [24,25], we predict a violation
for realistic experimental parameters [25,26], with the
possibility of a straightforward extension of the analysis
to different macroscopic systems, up to everyday-life scales
[27]. This disproves a well-known conjecture [28] that LGI
violation in a macroscopic system requires high computa-
tional complexity and, thus, that suitable systems are
unlikely to exist in nature (see also Refs. [29,30]). It also
extends previous studies of QND-measurement-based LG
tests [31,32] that found no LGI violation with three-
measurement protocols, and it explicitly shows a fundamen-
tal difference between temporal (LG) and spatial (Bell)
nonclassicality in the macroscopic limit [33]. Our calculation
method allows a clear discrimination between incidental
disturbances from, e.g., spontaneous scattering and essential
disturbance due to quantum backaction. The clumsiness
loophole can be tightened as per WM, and doing so forces
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the macrorealist to a position strongly resembling quantum
mechanics.
Leggett-Garg inequalities.—The simplestLGI [2,15]con-

siders two-time correlation functionsCij ¼ hQðtiÞQðtjÞi, for
an observable Q measured at times ti, and giving discrete
values QðtÞ ¼ �1 [2] or else limited to the range QðtÞ ∈
½−1; 1� [18] (cf. Fig. 1). Under MR, the correlations obey

K3 ≡ C21 þ C32 þ C31 þ 1 ≥ 0; ð1Þ
while a quantum system can show K3 ¼ −1=2 in the case
of a two-level system [2] and can reach the algebraic
bound K3 ¼ −2 for an infinite number of levels [34,35].
Equation (1) can be generalized to a class of inequalities
involving n measurements in time [36], namely,

Kn ≡
X

1≤j<i≤n
hQiQji þ ⌊n

2
⌋ ≥ 0; ð2Þ

where ⌊n⌋ denotes the integer part of n. Such inequalities
correspond to facets of the Leggett-Garg polytope and
therefore provide optimal discrimination of nonclassical
correlations [37,38].
QND measurement.—An ideal QND measurement

[21,22] is an indirect measurement of a variable PS per-
formed by coupling the “system” (S) to a “meter” (M) via an
interaction Hamiltonian Hint ¼ PSPM, where PS;M are the
conjugate momenta to XS;M, respectively. The coupling
imprints information about PS on XM, without disturbing
PS, which commutes with Hint. A strong, direct measure-
ment is then made on XM, providing information about PS.
This leaves the system in a state with reduced uncertainty in
PS. In contrast, the QND interaction produces a backaction
on the conjugate variable XS, increasing its uncertainty.
Detailed and accurate models of QND measurements,

including realistic models for measurement-induced
disturbance, have been developed for atomic ensembles
probed by near-resonant light [25,39]. We use the collective

quantum variables formalism introduced in Ref. [24] and
expanded in Refs. [25,40]. The same formalism can be
applied to other macroscopic systems [24].
The atomic system we consider consists of NA spin-1

atoms, described by the collective spin vector J with

components Jk ≡P
lj
ðlÞ
k , where jðlÞ is the total angular

momentum of the lth atom. The probe light, or “meter”
consists of pulses of NL photons described by the Stokes
vector SðiÞ for the ith pulse with components Sk ¼
1
2
ða†L; a†RÞσkðaL; aRÞT , where σ are the Pauli matrices.

The system plus meter are described by the vector of
observables V ¼ ðJ;Sð1Þ;…;SðnÞÞ, where n is the total
number of light pulses.
The initial state is fully x polarized, i.e., with hJxi ¼ NA

and hSðiÞx i ¼ NL=2. The angular-momentum components
Jy; Jz and the Stokes components Sy; Sz have zero mean
and, due to the large numbers, NA ∼ 106 and NL ∼ 108, are
Gaussian distributed to a good approximation. In this sense,
we use a macroscopic number of photons to perform a
measurement on a macroscopic number of atoms. We can
thus describe the full state using the average hVi and the
covariance matrix [24,25,40,41],

Γij ≡ 1

2
hViVj þ VjVii − hViihVji: ð3Þ

Free dynamics under a magnetic field along the x direction
produces the evolution

hJi ↦ hJθi ¼ RxðθÞhJi;
ΓJ ↦ ΓJθ ¼ RxðθÞΓJRxðθÞT; ð4Þ

where θ≡ κBΔt is the rotation angle of the atoms in the
time Δt, given the coupling constant κ≡ −μBgF between
the atoms and a magnetic field with amplitude B, if μB is the
Bohr magneton and gF the Landé factor; ΓJ refers to just
the atomic part of the covariance matrix, and RxðθÞ is the
matrix describing rotation about the Jx axis. A measure-
ment consists of passing a pulse of light, which is short
relative to the Larmor precession time, through the
atoms. Faraday rotation, produced by a QND interaction
Hamiltonian Hint ¼ gSzJz, imprints the instantaneous
value of Jz on the light, described by the relations (in
the small angle approximation)

SðoutÞy ¼ SðinÞy þ gJðinÞz SðinÞx ; ð5aÞ
JðoutÞy ¼ JðinÞy þ gJðinÞx SðinÞz ; ð5bÞ

where g is a coupling constant. Jz and Sz, which commute
with Hint, are unchanged. The required Hamiltonian has
been achieved by dynamical decoupling [23,42] and by
two-color probing [43].
The linear operator relations of Eqs. (5a) and (5b)

transform the mean and covariance matrix as

hVi ↦ MQhVi; Γ ↦ MQΓMT
Q; ð6Þ

FIG. 1 (color online). Schematic representation of the Leggett-
Garg test. An observable Q is measured at different times ti
(represented along the horizontal axis), giving results Qi.
Macrorealism assumes noninvasive measurements, with the
consequence that correlations, e.g., C13 ¼ hQ1Q3i, are equal,
independently of which sequence was performed to obtain them.
S1 and S3, which differ by the presence or absence of Q2, give
the same C13 in macrorealism but not in quantum mechanics.
LGIs can detect macrorealism violations using experimentally
observed correlations.
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where the matrix MQ has the form [44]

MQ ¼
�
A Bat

Bl L

�
: ð7Þ

The matrix elements Bat and Bl represent the backaction of
the interaction on the atoms (J) and light (S), respectively,
and are practically given by the terms multiplying g in
Eqs. (5a) and (5b). In a realistic situation, i.e., for finite
optical depth (OD), we must take into account loss and
decoherence due to off-resonant scattering of the QND
probe light. As discussed in Ref. [25], if a fraction 1 − χ of
the NA atoms scatters a photon, this alters the variances of
the quantum components y and z as

ΓJ ↦ χ2ΓJ þ NAð1 − χÞ
�
χ

2
þ 2

3

�
1: ð8Þ

Note that for constant g, χ → 1 (i.e., no scattering noise) as
OD → ∞. Repeated application of these transformation
rules gives hJi and ΓJ describing the now-correlated system
after all pulses have traversed the ensemble. Through

Eq. (5a), the meter variables SðiÞy can be taken to represent
the correlated measurement outcomes on the system
observable JzðtiÞ at times ti.
Application to LG inequalities.—The n outcomes y ≡

ðy1;…; ynÞ ¼ ðSð1Þy ;…; SðnÞy Þ are distributed according to
the Gaussian probability density function

PrðyÞ ¼ GðnÞ
ΓY
ðyÞ ¼ exp ½−ðy − μÞTΓ−1

Y ðy − μÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞn detΓY

p ; ð9Þ

with mean μ ¼ 0, where ΓY is the covariance matrix
describing y [45].
As in the original LG article, we generate a dichotomic

variable QðtiÞ≡ sgnðyiÞ [46]. The correlators Cij can

be evaluated from the 2 × 2 covariance matrix ΓYij
¼

�A B
B C

�
obtained as the submatrix of ΓY describing the

measured pulses SðiÞy ; SðjÞy . In particular, Cij ¼ ð1 − 2α=πÞ
sgnðBÞ, where α ¼ arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AC=B2 − 1

p
Þ.

Results.—Predicted LGI outcomes are shown in Fig. 2,
where we evaluate sequences with n ¼ 3, 5, 7, and 9
measurements. To directly compare these cases, we con-
sider a reduced LG parameter K0

n ≡ Kn=⌊n=2⌋, noting
that K0

3 ¼ K3. We evaluate K0
3–9, taking into account

decoherence and losses as in Eq. (8). For simplicity, we
consider the case of equally delayed measurements, i.e., a
rotation angle θ between each of the n measurements.
Realistic parameters are used: g ¼ 10−7, NA ¼ 106, NL ¼
5 × 108, and χ ¼ exp½−ηNL�, where η ¼ 0.5 × 10−9 [25].
No violation is seen with an n ¼ 3 protocol; a violation is
seen with n ¼ 5 but only with very low η, below current
experimental values (not shown). For n ¼ 7 and n ¼ 9, the
LGI violation is achievable with realistic parameters (see
Fig. 2). In Fig. 2(b) we compare the n ¼ 9 case with and

without loss and noise introduced due to off-resonant
scattering. Note that for most θ, the effect of unwanted
scattering is to reduce the observed violation. In contrast,
for θ ≈ π, scattering increases the violation or can create an
apparent violation that is absent for an ideal measurement
(i.e., with η ¼ 0).
The above tests involve a large number of correlation

terms (e.g., 21 for computing K7). We can considerably
simplify the protocol and reduce the number of measure-
ment sequences by considering just a triple fQa;Qb;Qcg,
extracted out of the n-measurement scheme, and the
corresponding correlators, namely,

K3 ¼ Cab þ Cbc þ Cac þ 1 ≥ 0: ð10Þ
We compute the best achievable K3, optimizing over all

possible triples and all possible sequences, since from a
macrorealist perspective, possible additional measurements
have no effect. The results are plotted in Fig. 3, where it can
be seen that a violation of Eq. (10) is obtainable, especially
around the points θ ¼ π=2 and θ ¼ π=3. The optimal
sequences of seven measurements for θ ¼ π=2 are also
depicted in Fig. 3. For an ideal QND measurement we
should get C35 ¼ C57 ¼ −1, with C37 < 1 due to the
various discarded measurements made between Q3 and

FIG. 2 (color online). Numerical evaluation of the reduced
LGIs as a function of θ. (a) K0

n for (from top to bottom) n ¼ 3, 5,
7, 9 in the presence of scattering. (b) Numerical evaluation of K0

9.
The two lower blue (upper green) curves are results with
(without, i.e., Bat ¼ 0) backaction in Eq. (7). Solid (dashed)
lines show results with (without) scattering. All plots are obtained
using the same parameters, taken from Ref. [25] (see text).
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Q7 that decorrelate the two measurements and give rise to
the LGI violation. Compared to the seven-point measure-
ment of Fig. 2, this protocol shows less violation but requires
fewer measurement sequences and involves calculation of a
simpler correlation function, potentially making it more
robust in the presence of experimental uncertainties.
Classical vs quantum effects.—Within a quantum inter-

pretation, we can ask whether the violation of LGIs
witnesses a genuine quantum effect or whether it is due
to the classical invasivity (clumsiness) of the measurement.
There are two ingredients that contribute to the violation:
the scattering and the quantum backaction of the meas-
urement on Jy. The violation around θ ¼ π can be easily
explained in terms of the classical invasivity of the
measurement: Measurements at angles kπ, which should
be perfectly correlated or anticorrelated, are decorrelated
due to scattering effects. On the other hand, the quantum
backaction is a genuinely quantum effect, required by the
Heisenberg uncertainty principle.
Our formalism allows us to distinguish between these

two contributions, and we do so by simulating a QND
measurement where the effect of the quantum backaction is

“turned off,” i.e., Bat ¼ 0 corresponding to JðoutÞy ¼ JðinÞy in
the input-output relations of Eqs. (5a) and (5b).
The results in this last case are shown in the green upper

curves of the bottom of Fig. 2(b). These results show that
the violation genuinely comes from the quantum back-
action effect in most of the cases. Scattering becomes
important only at some specific phases and is responsible
for a significant violation only for θ approaching π.
Tightening the clumsiness loophole.—WM suggest per-

forming, in addition to the LGI test, auxiliary measurement
sequences that prove the individual measurements are

nondisturbing [20], and describe appropriate sequences
for projective measurements on qubits. Projective measure-
ments are unrealistic in the macroscopic context, however.
We now show how even nonprojective QND measurements
can be proven to be nondisturbing; see also Refs. [23,44].
Consider two identical, nondestructive measurements in

rapid succession, i.e., with no system evolution in between.
If the statistics of the first and second measurements agree,
the first cannot have disturbed the system. We illustrate this
with linear measurements of Jz with known gain g, described

as SðoutÞy ¼ nþ gJðinÞz and JðoutÞz ¼ JðinÞz þ d, where the
random variables n and d are the readout noise and the
disturbance to Jz, respectively. Considering two identical
measurements in quick succession, it is easily shown that

hSð2Þy − Sð1Þy i ¼ hdi and varðSð2Þy Þ − varðSð1Þy Þ ¼ g2varðdÞ,
which provide ready quantifications of hdi and varðdÞ.
Both of these approach zero for QND measurements in the
limit of high OD (the “ideal case” of Fig. 2) [47]. It is thus
possible to demonstrate to a macrorealist that the QND
measurement does not disturb Jz.
Combined with the LGI violation, this puts the macro-

realist in a tight spot, requiring some kind of “colluding
measurements” (in the words of WM) to explain the LGI.
To remain within the framework of a realistic explanation,
the macrorealist must believe there is a condition of the
system after the QNDmeasurement. This clearly involves a
change in the state but not of Jz; some other, orthogonal
variable must change. Moreover, this disturbance must give
rise to a LGI violation, so it must be a variable that, in time,
rotates into Jz. Given that the magnetic rotation is about
the x axis, Jx does not rotate into Jz, and the only option is
that the measurement disturbs Jy. Being orthogonal to Jz,
this disturbance does not show up in the quickly repeated
measurements of the auxiliary sequences, but it becomes
visible later as the state evolves, leading to the LGI
violation. Remarkably, this macrorealist explanation repro-
duces precisely, if qualitatively, the quantum mechanical
explanation. The macrorealist must reinvent quantum back-
action to describe the alleged “clumsiness.”
Conclusions and discussion.—We have shown that

quantum nondemolition measurements allow true Leggett-
Garg inequalities to be tested in macroscopic systems.
Protocols involving simple state preparation and as few as
five measurements can violate a generalized LGI, and the
degree of violation grows with the number of measurements.
Using covariance matrix simulations, we can distinguish
violations due to quantum backaction from violations due to
incidental but unavoidable effects such as incoherent scatter-
ing. We show how QND measurements can be used to
tighten the “clumsiness loophole” in a macroscopic system
and force the macrorealist to a position closely resembling
quantum mechanics. The LG test strategy described here
uses only Gaussian states and Gaussian measurements, and
can foreseeably be applied to very large objects such as
gravitational wave interferometer mirrors [27].

FIG. 3 (color online). Three-point LGI violations within longer
measurement sequences. Upper and lower curves show K3 vs θ
for optimized seven- and nine-measurement sequences, respec-
tively. Both plots are obtained for NL ¼ 5 × 108 including
scattering and loss effects. Spirals illustrate optimal sequences
in the seven-measurement protocol with delay θ ¼ π=2, for which
K3 ¼ C35 þ C37 þ C57 þ 1. Hollow orange circles indicate mea-
surements used to compute correlators in K3; filled green circles
indicate measurements performed but discarded.
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