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We show how to build a multiscale entanglement renormalization ansatz (MERA) representation of the
ground state of a many-body Hamiltonian H by applying the recently proposed tensor network
renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)] to the Euclidean time
evolution operator e−βH for infinite β. This approach bypasses the costly energy minimization of previous
MERA algorithms and, when applied to finite inverse temperature β, produces a MERA representation of a
thermal Gibbs state. Our construction endows tensor network renormalization with a renormalization group
flow in the space of wave functions and Hamiltonians (and not merely in the more abstract space of tensors)
and extends the MERA formalism to classical statistical systems.

DOI: 10.1103/PhysRevLett.115.200401 PACS numbers: 05.30.-d, 02.70.-c, 03.67.Mn, 75.10.Jm

Consider a strongly interacting quantum many-body
system in D spatial dimensions described by a microscopic
Hamiltonian H. Understanding its collective, low energy
behavior is a main goal in condensed matter and high
energy physics, one that poses a formidable theoretical
challenge. To tackle this problem, plenty of methods have
been proposed based on the renormalization group (RG)
[1–3], that is, on studying how the physics depends on the
scale of observation. Weakly interacting systems can be
addressed perturbatively using momentum space RG [2].
Instead, strongly interacting systems often require non-
perturbative, real space RG methods, as pioneered by
Kadanoff [1] and Wilson [2].
Improving on Kadanoff and Wilson’s proposals, White’s

density matrix renormalization group for quantum spin
chains [4] established how to systematically preserve the
ground state wave function during real-space coarse grain-
ing, namely, by preserving the support of its reduced density
matrix. Similarly, Levin and Nave’s tensor renormalization
group (TRG) [5] taught us how to coarse grain Euclidean
path integrals of one-dimensional quantum systems (also
partition functions of two-dimensional classical systems).
Both the density matrix renormalization group and TRG are
very successful, versatile approaches. However, they depart
significantly from the spirit of the RG, in that they produce a
coarse-grained, effective description of the system that still
retains some irrelevantmicroscopic details. As a result, these
methods (i) fail to define a properRG flow, onewith, e.g., the
correct structure of fixed points, and (ii) struggle to deal with
critical systems or systems in D ≥ 2 dimensions, where
the accumulation of irrelevant microscopic degrees of
freedom is more significant and harmful.
These difficulties have been solved with two closely

related proposals. First, entanglement renormalization was
put forward to address the above two problems in the

context of ground state wave functions [6,7]. By introduc-
ing disentanglers, which remove short-range entanglement,
a proper RG flow is generated, as well as a RG trans-
formation that is computationally sustainable even at
criticality. In addition, entanglement renormalization leads
to an efficient tensor network description of ground states
for critical systems, the multiscale entanglement renorm-
alization ansatz (MERA) [7], of interest not only as a many-
body variational state [7–12] but also as a lattice realization
of the holographic principle [13,14].
Tensor network renormalization (TNR), on the other

hand, was more recently proposed to tackle the same
problems in the context of Euclidean path integrals (and
classical statistical systems) [15]. The Euclidean path
integral Z≡ trðe−βHÞ is represented by a tensor network,
consisting of copies of a single tensor A [16], which
extends both in space and Euclidean time directions.
Through local manipulation of this tensor network, TNR
produces a sequence of tensors,

A → A0 → A00 → � � � → AFP; ð1Þ

corresponding to increasing length scales, which flow
towards some infrared fixed-point tensor, AFP. The later
retains only the universal features of the phase or phase
transition [15]. Once again, the key of the approach is the
removal of short-range correlations by disentanglers.
In this Letter, we establish a close connection between

the two approaches. We show that, when applied to the
Euclidean path integral restricted to the upper half
plane, TNR generates a MERA for the ground state of
Hamiltonian H. More generally, TNR also produces a
MERA for the thermal Gibbs state ρβ ≡ e−βH=Z at finite
inverse temperature β, as well as for the low energy
eigenstates of H on a finite periodic chain. Our result
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provides an alternative route to the MERA, one that
bypasses the costly energy minimization of previous
algorithms [8,9] and has several other significant advan-
tages, both conceptual and computational, that we also
discuss. Among those, we emphasize that (i) we obtain the
first correct MERA representation of the thermal state ρβ
[17], together with an algorithm to find it, (ii) the con-
nection implies that TNR produces a RG flow in the space
of wave functions and Hamiltonians, and not just in the
abstract space of tensors, Eq. (1), and (iii) the MERA
formalism can be applied now also to classical statistical
systems. For simplicity, we consider a translation invariant
system in D ¼ 1 dimensions, although the key results
generalize to inhomogeneous systems in dimension D ≥ 1.
Tensor network for Euclidean time evolution.—Given a

translation invariant Hamiltonian H in one dimension, we
use a standard procedure (see Ref. [18] Sec. A) to produce a
two-dimensional tensor network representation of the
Euclidean time operator e−βH or Euclidean path integral
trðe−βHÞ. This tensor network is made of copies of a single
tensor A. If both the system size L and the inverse
temperature β are infinite, then the network spans the
entire (x; τ) plane, where x and τ label space and Euclidean
time, respectively. Here we will consider tensor networks
for e−βH on three different geometries, obtained by intro-
ducing a horizontal cut at τ ¼ 0 and by choosing L and β to
be either finite or infinite (see Ref. [18] Sec. B).
TNR yieldsMERA.—Let us start with the upper half plane,

Fig. 1, which corresponds to the ground state jΨi ofH on an
infinite lattice. The network has an open boundary at τ ¼ 0,
with an infinite row of open indices, one for each site of the

one-dimensional lattice on which H acts. We first apply
TNR everywhere on the upper half plane except near τ ¼ 0,
where we keep the open indices of the tensor network
untouched. TNR acts through an intricate sequence of local
replacements [15]. Here we skip the technical details
(reviewed in Ref. [18] Sec. C) and focus instead on
describing the final result: a coarse-grained tensor network
with effective tensor A0 for most of the upper half plane, in
accordance with Eq. (1), together with a double row of
special tensors, so-called disentanglers and isometries,
which correspond to one layer of the MERA [25]. These
tensors connect the microscopic degrees of freedom at
length scale s ¼ 0 (represented by the original open indices
of the network) with the coarse-grained degrees of freedom
at length scale s ¼ 1 (represented by the lower indices of the
lowest row of tensors A0). We can now repeat the process on
tensors A0 to obtain coarse-grained tensors A00 and a second
row of disentanglers and isometries, i.e., a second layer of
the MERA, connecting scales s ¼ 1 and 2. Iteration then
produces a full MERA approximation for the ground state
jΨi of H, encompassing all length scales s ¼ 0; 1; 2;…,.
Thermal MERA.—Let us now consider a horizontal strip

of finite width β, Fig. 2(a), which is proportional to the
thermal state, ρβ ≡ e−βH=Z. This time we have two
boundaries, each with an infinite row of open indices:
the incoming and outgoing indices of the Euclidean time
evolution operator, e−βH. As before, we use TNR to coarse
grain the tensor network, except near its open boundaries,
where we do not touch the open indices. Figure 2(b) shows
the net result: a coarse-grained tensor network, with
effective tensor A0, together with a double row of disen-
tanglers and isometries both for the incoming and outgoing

FIG. 1 (color online). (a) Tensor network, the ground state jΨi
of H on an infinite lattice. It is made of copies of tensor A and
restricted to the upper half plane ðx; τþÞ, with a row of open
indices at τ ¼ 0. (b) By coarse graining the tensor network while
leaving the open indices untouched, we obtain a new tensor
network with tensors A0 together with one row of disentanglers
and isometries. (c) Further coarse graining of the tensor network
produces new coarse-grained tensors A00 and a second layer of
disentanglers and isometries. (d) By iteration we obtain a full
MERA approximation for state jΨi.

FIG. 2 (color online). (a) Tensor network on an infinite strip of
finite width β, with two rows of open indices. It is proportional to
the thermal state, e−βH=Z. (b) By coarse graining the tensor
network while leaving the open indices untouched, we obtain a
new tensor network with tensors A0 together with an upper and
lower row of disentanglers and isometries. (c) Further coarse
graining produces a thermal MERA.
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indices. After O( log2ðβÞ) iterations of the coarse-graining
procedure, we obtain a MERA representation of the
thermal state, Fig. 2(c), made of O( log2ðβÞ) double layers
of disentanglers and isometries for both the incoming and
outgoing indices, together with a central row of tensors.
Disentanglers and isometries are isometric tensors and thus
do not affect the spectrum of eigenvalues of the thermal
MERA, which therefore depends exclusively on the central
row of tensors [26].
The thermal MERA obtained from TNR resembles the

form first suggested by Swingle in the context of holog-
raphy [13], where a 1þ 1 conformal field theory is dual to
a gravity theory in three space-time dimensions. In this
context, the thermal MERA is interpreted as describing a
spacelike cross section of a black hole space-time geo-
metry. A significant difference in our construction is the
central row of tensors, which is absent in Swingle’s
proposal [13] and provides ρβ with the correct thermal
spectrum of eigenvalues fe−βEi=Zg, where fEig are the
eigenvalues of H. This central row of tensors can be
thought of as representing the Einstein-Rosen bridge
connecting the two asymptotic anti–de Sitter regions
[27], which seems to provide a manifestation of the ER ¼
EPR conjecture [28].
Periodic chain of size L.—In our third construction, we

use TNR to coarse grain a tensor network for the ground
state of Hamiltonian H on a periodic chain of size L; see
Fig. 3(a). The network consists of a semi-infinite, vertical

cylinder of width L, with a row of open indices. After about
O( log2ðLÞ) coarse-graining steps, the size of the system
has effectively become Oð1Þ, see Fig. 3(c), and we have
O( log2ðLÞ) layers of the MERA connected to a semi-
infinite cylinder of Oð1Þ width. This semi-infinite cylinder
can be understood as the infinite product of a transfer
matrix T. The dominant eigenvector of T leads to the
ground state of H, whereas subdominant eigenvectors
describe low energy eigenstates.
To illustrate the computational possibilities offered by

the new algorithm, we consider the one-dimensional
quantum Ising model with the transverse magnetic field
both at finite β for an infinite chain, and at zero temperature
for a finite periodic chain of length L [29]. The calculation
required less than 5 min on a 2.5 GHz dual core laptop with
4 Gbytes of memory (MERA bond dimension χ ¼ 10).
First, for L ¼ ∞, Fig. 4(a) shows the expectation value of
the energy density Ethermal ≡ trðρβHÞ=L as a function of the

FIG. 3 (color online). (a) Tensor network on a semi-infinite
vertical cylinder of finite width L and with a row of open indices,
proportional to the ground state of H on a periodic chain made of
L sites. (b) Result of coarse graining the initial tensor network
while not touching its open indices. (c) MERA connected to a
semi-infinite vertical cylinder of Oð1Þ width. Inset: Transfer
matrix T of this cylinder. The eigenvectors of T with the largest
eigenvalues correspond to the low energy eigenstates of H.
(d) MERA for the ground state or low energy excited states of H,
where the top tensor is an eigenvector of the transfer matrix T.

FIG. 4 (color online). (a) Thermal energy per site (above the
ground state energy) as a function of the inverse temperature β,
for the quantum Ising model H ¼ P

iXiXiþ1 þ λ
P

iZi in an
infinite chain, for different values of magnetic field λ. Continuous
lines correspond to the exact solution. (b) Connected two-point
correlators at the critical magnetic field λ ¼ 1, as a function of the
distance d, for several values of β. Continuous lines correspond
again to the exact solution. (c) Low energy eigenvalues of H for
critical λ ¼ 1 as a function of 1=L. (d) Low energy spectrum ofH
for critical λ ¼ 1 and corresponding momentum (in units of
2π=L) for L ¼ 1024 sites, which appear organized according to
the conformal towers of the identity I (red), spin σ (green), and
energy density ϵ (blue) primary fields of the Ising conformal field
theory, [30]. Discontinuous lines in (c) and (d) correspond to the
finite-size conformal field theory prediction, which ignores
corrections of order L−2.
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inverse temperature β, while Fig. 4(b) displays, at the
critical magnetic field, the crossover between the poly-
nomial decay of correlations at short distances (due to
quantum fluctuations at criticality) and their exponential
decay at longer distances (due to finite temperature
statistical fluctuations). Then, for β ¼ ∞, Figs. 4(c) and
4(d) show, respectively, the low energy spectra of H as a
function of the inverse system size 1=L and the energy and
momentum of low energy states for L ¼ 1024. In all cases,
an accurate approximation to the exact result is obtained.
Discussion.—Since its proposal a decade ago [7], the

MERA has been regarded as a variational class of states.
Accordingly, one attempts to approximate the ground state
jΨi of H by optimizing the variational parameters con-
tained in the disentanglers and isometries of the MERA, for
instance, by iteratively minimizing the expectation value of
H [8,9]. Such energy optimization is costly (it may require
thousands of sweeps over scale) and prone to becoming
trapped in local minima. Moreover, there is no guarantee
that the end result is an approximation to the ground state
jΨi—one just has a wave function with, hopefully, rea-
sonably low energy. Here we have argued that, instead, an
approximate MERA representation of the ground state jΨi
can be obtained with TNR by coarse graining an initial,
quasiexact tensor network representation of jΨi [31]. This
only requires one sweep over scale, and it is therefore
computationally much more efficient (see Ref. [18]
Sec. D). In addition, at each coarse-graining step TNR
introduces a truncation error [15] that can be explicitly
computed. If this truncation error is sufficiently small, then
one can certify that the resulting MERA approximates the
true ground state jΨi within that small error [32].
Importantly, TNR acts locally: the coarse graining of the

tensor network at point ðx; τÞ only depends on the tensors in
an immediate neighborhood [15]. Let us mention three
consequences for the resulting MERA. (i) Since TNR is not
aware of the system size L or inverse temperature β, it
produces the same tensors A; A0; A00;…, and disentanglers
and isometries for the ground state jΨi in the thermody-
namic limit (L ¼ β ¼ ∞) as it does for the states ρβ and
jΨðLÞi at finite β or L. Thus, a single TNR calculation
produces an accurate MERA approximation for all these
states. (ii) In the absence of translation invariance, where a
different tensor Ai may be required for each site i of the
lattice, the coarse graining of different parts of the system
can be conducted in parallel, leading to a massive reduction
in computational time. (iii) At a conceptual level, locality of
TNR implies the validity of the theory of minimal updates
[34]. This theory, which asserts that only certain parts of the
MERA need to be changed in order to account for a
localized change in the Hamiltonian H [34], is particularly
useful in the study of systems with boundaries, defects, or
interfaces [9,12].
In summary, in this Letter we have shown that, when

applied to the Euclidean path integral restricted to several

geometries, TNR [15] produces a MERA for the ground
state and thermal states of a quantum Hamiltonian, and
have explored a number of consequences of this result. We
conclude by briefly mentioning two more implications.
First, thanks to this connection, TNR inherits from the
MERA its ability to define a RG flow in the space of wave
functions and Hamiltonians [6–8]. Notice that extracting
the emergent physics from these RG flows should be easier
(both conceptually and computationally) than extracting it
from the RG flow in the more abstract space of tensors,
Eq. (1). Second, although we have focused on quantum
systems, TNR can also be applied to statistical partition
functions [15]. Thereforem the present construction
extends the MERA formalism (including strategies to
extract universal critical properties [10–12]) to classical
statistical systems.
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