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Loss is known to be detrimental for achieving perfect focusing with the passive perfect lens designs
suggested thus far, and it is believed to pose a fundamental barrier. We show that perfect lensing can be
achieved with actual lossy left-handed metamaterials, without a need for gain or nonlinearity. The proposed
loss-immune perfect lens is composed of a single interface between a conventional dielectric material on
the source side and a lossy left-handed material on the image side. Its immunity to material loss was derived
analytically using three complementary methodologies, confirming perfect lensing with point-to-point
accuracy and shedding light on the underlying focusing mechanism. This result provides a new road map
for practical realization of a near-field camera based on the single-interface lens design.
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Introduction.—The diffraction of light in conventional
media limits light focusing to spots roughly half-
wavelength in diameter [1]. This barrier is associated with
the inability to collect the near-field evanescent spatial
spectrum. The advent of composite electromagnetic media
possessing negative values of both effective permittivity
and permeability challenged this paradigm [2–5]. In such
media the electric field, magnetic fields, and wave vector
of plane waves form a left-handed set. This results in a
Poynting vector antiparallel to the wave vector, and in
negative refraction at interfaces with regular materials.
Hence, a slab made of a left-handed metamaterial acts
as a flat lens [2]. Furthermore, if perfectly impedance
matched, it performs, in principle, as a perfect lens [6].
Such a lens would be capable of collecting the entire spatial
frequency range (including the evanescent), thereby having
no inherent limit to its focusing capability.
The perfect lens idea stimulated a great deal of research

aimed at its realization [7–9]. However, a fundamental
obstacle lies in the fact that left-handedmaterials are intrinsi-
cally highly dispersive and therefore lossy, whereas the
perfect lens relies on the availability of lossless (noncausal)
left-handed materials. This is because its subdiffraction
focusing capability degrades exponentially with any
deviation from matching, incurred by even small loss
[10–17].
Presently, therefore, perfect lensing is being pursued by

alternative approaches. One approach aims to mimic the
boundary conditions imposed by a left-handed slab using a
pair of phase-conjugating interfaces which requires suffi-
ciently strong nonlinearity [18–21], for example, by using
four-wave mixing in graphene sheets to produce negative
refraction [22,23]. Another approach employs a pair of
parity-time-symmetric metasurfaces instead, avoiding non-
linearity but introducing optical gain [24,25]. Maxwell’s
fish-eye lens, constructed entirely of a positively refracting

inhomogeneous medium, can also act as a perfect
lens [26,27].
Here we show that perfect lensing can be achieved using

a passive, lossy, left-handed metamaterial by applying a
single-interface configuration. The proposed lens is com-
posed of only one interface, between a dielectric and a
realizable (lossy, causal) left-handed metamaterial. It proves
surprisingly resilient with a perfect focal plane, and does not
require the use of nonlinear effects or gain media.
We arrive at this result by examining the single-interface

lens using three types of complementary closed-form
methodologies: transmission analysis to derive its basic
diffraction characteristics (see section “Single interface as a
spatial all-pass filter”), Green’s function analysis to study
its actual lensing capability (see section “Loss-immune
point-to-point imaging”), and modal analysis for further
insight into its lensing mechanism (see section “Modal
interpretation for perfect lensing”). They all consistently
show that the single-interface lens generates a singular
focal spot, even with material loss, making it a loss-immune
perfect lens.
Single interface as a spatial all-pass filter.—Consider an

incoming TE-polarized plane wave of angular frequency ω
and spatial frequency β (z wave vector component)
impinging on a single interface between a dielectric (double
positive, DPS) and a left-handed medium (double negative,
DNG) at x ¼ 0 [Fig. 1(a)]. The y-directed electric field
phasor E ¼ fðxÞe−jβzy can be written as a sum of incident
(from the DPS side) reflected and transmitted waves
(ejωt convention),

fðxÞ ¼
�
e−jkx;DPSx þ rejkx;DPSx x < 0

te−jkx;DNGx x > 0;
ð1Þ

where k2x;DNG;DPS ¼ ðω=cÞ2εDNG;DPSμDNG;DPS − β2 is the
x wave vector component in the DNG and DPS media,
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respectively, εDNG;DPS and μDNG;DPS are the relative media
permittivities and permeabilities, c is the speed of light in
vacuum, and the field amplitude reflection (r) and trans-
mission (t) coefficients are given by

r ¼ kx;DPS=μDPS − kx;DNG=μDNG
kx;DPS=μDPS þ kx;DNG=μDNG

;

t ¼ 2kx;DPS=μDPS
kx;DPS=μDPS þ kx;DNG=μDNG

:

ð2Þ

Generally, there are two branch choices to consider for each
of kx;DNG and kx;DPS. We take the root branches such that
Imfkx;DNGg > 0 and Imfkx;DPSg < 0, a choice we thor-
oughly justify in the next section, when we consider the
Green’s function.
We first examine the matched case, defined as εDNG ¼

−εDPS and μDNG ¼ −μDPS (implying impedance matching
μDPS=εDPS ¼ μDNG=εDNG and lossless materials). With the
aforementioned branch choice, the transverse wave vector
component undergoes a sign shift at the interface
(kx;DNG ¼ −kx;DPS), regardless of β. Hence, all wave vector
components perpendicular to the interface—propagating
and evanescent—invert. This leads to uniform reflection-
less transmission across all spatial frequencies, as Eq. (2)
becomes r ¼ 0, t ¼ 1 for all β.
For the matched case, the slab and single-interface lenses

act similarly: they perform as uniform spatial all-pass filters
and are therefore expected to act as perfect lenses. The
principle difference between the two lenses, however, lies in
their respective performance under mismatched conditions.
While the slab lens resolution severely degrades when
material loss or frequency offsets from the matching fre-
quency are introduced [10–17], the single-interface lens
resolution does not. In fact, we show that it maintains perfect
resolution under realistic deviations from the matching
condition,whether these are due tomaterial loss or frequency
offsets—i.e., it is both loss immune and broadband.
From a plane wave (both uniform and nonuniform) point

of view, such robustness requires that the field amplitude
transmission coefficient maintains an asymptotically uni-
form unbounded form; i.e., it must not exhibit a spatial
cutoff. Indeed, for large β values (β ≫ ω=c, kx;DPS ≈ −jjβj,
kx;DNG ≈þjjβj), the transmission is asymptotically uni-
form, approaching a finite value even when the matching
condition does not exactly hold:

t∞ ¼ lim
β→∞

t ¼ 2=ð1 − μDPS=μDNGÞ: ð3Þ

Figure 1 compares the single-interface and slab field-
amplitude transmission functions [Figs. 1(a) and 1(b)],
calculated using effective DNG parameters from two
existing implementations: (1) a low-loss printed circuit
board in the microwave regime [figure of merit: FOM ¼
jRefnDNGg=ImfnDNGgj ≈ 30 at 2.4 GHz, Fig. 1(c)] [28],
and (2) a higher-loss fishnet structure in the near IR

[FOM ≈ 3 at 1.4 μm, Fig. 1(d)] [29]. Mismatch sensitivity
renders the slab loss sensitive and narrow band, as its
transmission degrades whenever loss is increased [Fig. 1(d)
versus Fig. 1(c)], the frequency is offset [λ2;3 versus λ1 in
Fig. 1(d)], or the slab is made thicker [d1;2;3 in Fig. 1(c)].
Consequently, the slab shows a cutoff at ∼3k0 (at best) in
the microwave, and no subdiffraction capabilities in the
near IR. This sensitivity does not exist for the single-
interface configuration, which maintains an asymptotically
uniform transmission in all cases, consistent with Eq. (3).
Though not exactly 1, its relative uniformity over the entire
evanescent spatial frequency range is what counts towards
perfect lensing—as we argue in detail in the next section.
Loss-immune point-to-point imaging.—We now examine

the single-interface response to excitation by a source, and
show that it is perfectly reconstructed at the image. Since
any physical source can be superimposed from point
dipoles (3D) or current lines (2D), it is sufficient to study
the system response to such infinitely localized excitations,
i.e., the Green’s function. Perfect reproduction of these
singular sources means that their singularity is reproduced
at the image.
We consider the stationary case of a current line source

J ¼ I0δðxþ hÞδðzÞy, located a distance h from a lossless
matched DPS-DNG interface (x ¼ 0) in the DPS side

FIG. 1 (color online). TE amplitude transmission functions
(logarithmic versus β) of an air-DNG single interface [illustration
(a), red lines in (c) and (d)] and a DNG slab [illustration (b),
dashed blue lines in (c) and (d)], for d ¼ 2h, calculated based
on effective DNG parameters reported in the literature for two
implementations: (c) at microwave frequency ω ¼ 2π × 2.4 GHz
(εDNG ¼ −1–0.02i, μDNG ¼ −1–0.06i) [28], for d1;2;3 ¼
λ=3,2d1,3d1, and (d) at near-IR wavelengths λ1 ¼ 1.4 μm,
λ3;2 ¼ λ1�32 nm (εDNG;1;2;3 ¼ −1.38–0.08i, −1.15–0.08i,
−1.62–0.01i, μDNG;1;2;3 ¼ −0.79–0.52i, −0.32–0.21i,
−1.58–2.36i) [29], for d ¼ λ1=3. Mismatch is minimized at λ1
(RefnDNG;1;2;3g ≈ −1, −0.6, −1.9).
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(x < 0), and show that its logarithmic singularity is
reproduced at the image. The transverse electric field
component Ey satisfies the Helmholtz equation,

½∂2
x þ ∂2

z þ εðxÞμðxÞðω=cÞ2�Eyðx; zÞ ¼ 0; ð4Þ

everywhere except at the object and image planes
(x ¼ �h). We employ the z-coordinate Fourier space,
where the nonzero component of the vector potential
ψðx; zÞ ½Ey ¼ −jωψðx; zÞ� is retrieved by summing over
the field contributions gðx; βÞ of all spatial components β
emitted by the source:

ψðx; zÞ ¼ 1

2π

Z
∞

−∞
gðx; βÞe−jβzdβ: ð5Þ

The source-side (x < 0) equation then becomes

ð∂2
x þ k2x;DPSÞgðx; βÞ ¼ −μ0μDPSI0δðxþ hÞ; ð6aÞ

and in between the interface and image plane (0 < x < h)

ð∂2
x þ k2x;DNGÞgðx; βÞ ¼ 0; ð6bÞ

where k2x;DNG;DPS ¼ ðω=cÞ2εDNG;DPSμDNG;DPS − β2, and μ0
is the vacuum permeability.
Applying boundary conditions at the interface [continu-

ity of gðx; βÞ; ∂xgðx; βÞ=μðxÞ] and accounting for the
singularity at the source [a −μ0μI0 jump in ∂xgðx; βÞ],
yields the formal solution at the source-side

gðx; βÞ ¼
x<0

2ψ0

kx;DPS
ðe−jkx;DPSjxþhj þ reþjkx;DPSðx−hÞÞ; ð7aÞ

and in between the interface and the image plane

gðx; βÞ ¼
0<x<h

2ψ0

kx;DPS
te−jðkx;DNGþkx;DPSÞhe−jkx;DNGðx−hÞ; ð7bÞ

where r,t are the transmission and reflection coefficients
[Eq. (2)], and ψ0 ¼ μ0μDPSI0=4j.
Before we can inspect the solution at the image plane

and beyond it, we must resolve the ambiguity in Eq. (5), in
both the path of integration and the root branches (Riemann
sheets) for kx;DNG, kx;DPS along which this integration is
carried. To guarantee that power properly emanates out-
ward from the source in the DPS medium, the branch
choice for kx;DPS is such that the field contribution by any
(evanescent) spatial component decays away from the
source (Imfkx;DPSg < 0).
The branch choice for kx;DPS is more subtle. In the

matched case (εDNG ¼ −εDPS, μDNG ¼ −μDPS), both kx;DNG
and kx;DPS have equal magnitude. If their branches are
chosen such that they have the same sign as well, then from
Eq. (2) both r and t become infinite at any point along

the integration path (i.e., for any β). This means that the
integral in Eq. (5)—and hence the field solution itself—is
undefined at any point in space. On the other hand, taking
kx;DNG and kx;DPS to have opposite signs (Imfkx;DNGg > 0)
leads to r ¼ 0 and t ¼ 1 at any point along the integration
path, and to a well-defined field solution—making it the
appropriate branch choice. As we later show, this still leads
to field contributions that decay at infinity.
We carry the integration for thematchedcase along the real

β axis (from−∞ to∞). SubstitutingEq. (7a) intoEq. (5), and
using the well-known identity for the plane wave decom-

position of a cylindrical wave (Hð2Þ
0 is the zeroth-order

Hankel function of the second kind) [30], leads to

ψðx; zÞ ¼
x<0

ψ0

π

Z∞
−∞

e−jkx;DPSjxþhj

kx;DPS
e−jβzdβ ¼ ψ0H

ð2Þ
0 ðk0ρ−hÞ;

ð8aÞ

where k0 ¼ ðω=cÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εDPSμDPS

p
, and ρ−h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ hÞ2 þ z2

p
;

i.e., a cylindrical wave emanates from the source (x ¼ −h,
z ¼ 0) with no reflection from the interface, just as it does in
free space.
In between the interface and the image plane

(0 < x < þh), substituting Eq. (7b) for the integrand
and taking kx;DNG ¼ −kx;DPS also leads to a cylindrical
wave, centered at the image point (x ¼ þh, z ¼ 0),

ψðx; zÞ ¼
0<x≤h

ψ0

π

Z∞
−∞

eþjkx;DPSðx−hÞ
kx;DPS

e−jβzdβ ¼ ψ0H
ð2Þ
0 ðk0ρþhÞ;

ð8bÞ

where ρþh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − hÞ2 þ z2

p
. This integral converges only

for 0 < x ≤ þh (Imfkx;DPSg < 0), implying that Eq. (7b)
does not apply past the image plane. At the image point
the solution reproduces the logarithmic singularity
of the source, indicating that perfect reconstruction indeed
takes place there.
To retrieve the solution past the image plane, this

resulting singularity must be accounted for, extending
Eq. (6b),

ð∂2
x þ k2x;DNGÞgðx; βÞ ¼ −μ0μDPSI0δðxþ hÞ; ð9Þ

which extends Eq. (7b) accordingly, leading to field
contributions that decay past the image,

gðx; βÞ ¼
x>0

2ψ0

kx;DPS
te−jðkx;DNGþkx;DPSÞhe−jkx;DNGð−jx−hjÞ; ð10Þ

and could be integrated there. This produces the expected
analytical continuation of Eq. (8b) to the entire image side
(kx;DNG ¼ −kx;DPS),
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ψðx; zÞ ¼
x>0

ψ0

π

Z∞
−∞

e−jkx;DPSjx−hj
kx;DPS

e−jβzdβ ¼ ψ0H
ð2Þ
0 ðk0ρþhÞ;

ð11Þ
a result that could also be directly deduced from matching
Eq. (8b) at the image plane (as the medium is homo-
geneous there).
Equation (11) implies that the transverse electric field is

“mirrored” by the interface. However, since the z component
of the Poynting vectorSz (S ¼ E ×H) flips past the interface
due to the permeability sign change (whereas Sx does not),
the resulting cylindrical wave around the image is a focusing
backwards wave (Fig. 2, red arrows). Its phase fronts
propagate outwards from the image point while it carries
power inwards. The complementary TM response to a
magnetic current line source exhibits the same characteristics.
We therefore obtain that a cylindrical wave emanates

from the source outward, penetrating into the DNG side
without reflection where it produces a focusing cylindrical
wave that perfectly recreates the source singularity at the
image point (Fig. 2).
By perfectly reconstructing an image of the source “in

reverse,” we implicitly require that energy could drain out
of the system there (e.g., in practice there would be a
detector at the image), for a stationary solution could not
exist otherwise. This is a universal characteristic of any
perfect lensing. Energy entering a system from a source
must dissipate somewhere, and for a perfectly focusing
system, by definition, this must occur at the focus. This was
discussed in detail by Leonhardt for the Maxwell fish-eye
lens [26,27,31]. The necessity of a power drain may look
puzzling only because we are more accustomed to either
scattering scenarios (waves or beams generated at minus
infinity and drained at plus infinity) or conventional
constructions—where power is possibly generated at a
point source, but never perfectly refocuses, and thus again
dissipates at infinity.

We now consider the mismatched scenario. In principle,
perfect lensing requires uniform transmission of all spatial
frequencies from source to image. As discussed in the
previous section, the single-interface configuration main-
tains an all-pass transmission even with mismatch, though
it is only asymptotically uniform. We therefore reexamine
the field solution in between the interface and image plane
(0 < x ≤ h) and affirm that the source singularity is
reproduced at the image despite this nonuniformity.
Substituting Eqs. (7b) and (3) into Eq. (5) (keeping the

same branch choice and integration path), we divide the
field solution into two contributions, one associated with
the asymptotically uniform all-pass transmission and the
other with its distortion,

ψðx; zÞ ¼
0<x≤h

t∞ψ0H
ð2Þ
0 ðk0ρþhÞ

þ ψ0

π

Z
∞

−∞
tLP

eþjkx;DPSðx−hÞ
kx;DPS

e−jβzdβ; ð12Þ

where tLPðxÞ ¼ te−jðkx;DNGþkx;DPSÞx − t∞ (0 < x ≤ h) is the
nonuniform part of the amplitude transmission from one
side of the interface to an equal distance on the other side.
The first term on the rhs of Eq. (12) is a focusing

cylindrical wave around the image point [Eq. (8b) multi-
plied by t∞], which reproduces the logarithmic source
singularity at the image. This singularity is not canceled
by the second term, which converges at the image plane
(x ¼ h) since tLP → 0 for β → ∞ (kx;DNG → −kx;DPS).
Hence, as before, substituting Eq. (10) in Eq. (5) yields
the entire image-side field solution,

ψðx; zÞ ¼
x>0

t∞ψ0H
ð2Þ
0 ðk0ρþhÞ

þ ψ0

π

Z
∞

−∞
tLP

e−jkx;DPSjx−hj
kx;DPS

e−jβzdβ; ð13Þ

with tLPðxÞ ¼ te−jðkx;DNGþkx;DPSÞheþjðkx;DNGþkx;DPSÞjx−hj − t∞
(x > 0). Despite some field distortion around the image
[second term in Eq. (13)] relative to the ideal cylindrical
wave form emitted by the source, the source singularity is
still completely reproduced at the image point. In other
words, the focal spot of a stationary singular source remains
singular, even with mismatch.
Since mismatch can be incurred from both material loss

and offsets in frequency, this mismatch-immune point-to-
point imaging entails both loss immunity and a potentially
wide frequency band of operation (depending on the DNG
implementation bandwidth). It relies on the single-interface
all-pass transmission characteristic. Otherwise, if it had a
low-pass transmission (i.e., t∞ ¼ 0), as a mismatched DNG
slab does, the image-side singularity would vanish and be
replaced by a finite-size focal spot.
Modal interpretation for perfect lensing.—Single-

interface perfect lensing can also be understood in terms

FIG. 2 (color online). The stationary TE field solution for an
excitation by a current line source, perfectly “copied” by a
matched DPS-DNG single interface onto a drain (average power
flow direction shown by red arrows).
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of modal analysis. We consider the dispersion relations of
both regular modes [32] and Brewster modes [33,34],
defined as the poles and zeros of the transverse reflection
coefficient, respectively. While regular modes are resonan-
ces of the structure (subclassified into confined and leaky),
Brewster modes describe scenarios in which the reflected
wave contribution vanishes. The regular (þ) and Brewster
(−) single-interface dispersion relations therefore corre-
spond to the denominator and numerator of r in Eq. (2),
respectively (TE) [35],

kx;DPS=μDPS � kx;DNG=μDNG ¼ 0; ð14Þ

with the analytical solution [36]

β¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μDNG=μDPS

μDNG=μDPSþ1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μDNG=μDPS− εDNG=εDPS

μDNG=μDPS−1

s
: ð15Þ

The modal field profiles [substituting r into Eq. (1)],

fðxÞ ¼
�
e�jkx;DPSx x < 0

e−jkx;DNGx x > 0;
ð16Þ

fit an outgoing (þ) or incoming (−) plane wave in the DPS.
In the matched case (εDNG ¼ −εDPS, μDNG ¼ −μDPS),

the Brewster mode dispersion relation in Eq. (16) is
satisfied at any spatial frequency β (i.e., flat dispersion).
The smaller the mismatch, the flatter the dispersion curve
(Fig. 3), becoming completely flat in the matched case as
the simultaneous zero and pole in the rhs of Eq. (15) lead to
all values of β on the lhs.

For a matched single-interface configuration, the
Brewster modes are therefore excitable by all incoming
plane waves, propagating or evanescent, thereby leading to
an all-pass reflectionless transmission. Their field profile
decays towards the interface in the DPS (Imfkx;DPSg < 0)
and increases in the DNG (Imfkx;DPSg > 0), implying that
all incoming plane waves regain their original intensity
and phase an equal distance from the interface on the other
side—forming there a singular focus. It also agrees with
the plane wave decomposition of the Green’s function
[Eq. (11)] in between the source and image planes (Fig. 3,
inset). Single-interface perfect lensing can therefore be
attributed to the uniform excitation of single-interface
Brewster modes in between the source and image planes.
Conclusions and discussion.—We have presented the

case for using a single interface between a passive left-
handed material and a conventional dielectric as a perfect
lens. Using several complementary analytical methods, we
have shown that such a design sustains complete point-to-
point mapping from a source onto a detector, despite the
inherent material loss or other offsets from the matching
condition. Unlike recently published solutions for loss-
immune perfect lensing, the single-interface lens does not
require the use of gain media or nonlinear effects, and could
potentially operate over a wide frequency band.
It may therefore be applied, in principle, to design a

superresolution near-field camera. A possible approach
could be fabricating a thin left-handed material layer atop
a detection layer at the designated image plane. To best
approximate the single-interface lens, the detection layer,
supplying the necessary power drains, must behave as close
as possible to a perfect absorber [37], i.e., to eliminate
backscattering such that the left-handed material appears
semi-infinite from the source side. Since the intrinsic
spatial resolution is infinite, the actual value would be
determined by technical parameters—the detection element
pixel size, absorption efficiency, exposure time, and the
actual left-handed material implementation. Such a design
may provide a breakthrough solution for life-science
microscopy, lithography, and metrology.
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