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The three-dimensional shapes of graphene sheets produced by nanoscale cut-and-join kirigami are
studied by combining large-scale atomistic simulations with continuum elastic modeling. Lattice segments
are selectively removed from a graphene sheet, and the structure is allowed to close by relaxing in the third
dimension. The surface relaxation is limited by a nonzero bending modulus which produces a smoothly
modulated landscape instead of the ridge-and-plateau motif found in macroscopic lattice kirigami.
The resulting surface shapes and their interactions are well described by a new set of microscopic kirigami
rules that resolve the competition between bending and stretching energies.
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Bending and folding lifts a two-dimensional material
into the third dimension and enables different physical
functionalities. In a familiar example, folds can be intro-
duced into a piece of paper to change its three-dimensional
shape with or without allowing for tears. A lattice model for
the former case (kirigami) has been studied recently [1]
demonstrating rules for generating three-dimensional
shapes by selective removal of segments from a parent
honeycomb lattice and rejoining the holes by sharp folds.
Because the folding rules so defined are essentially
geometrical, it is possible that they could find applications
in two-dimensional nanoscale materials and possibly even
affect their electronic behavior [2].
However, applications to nanomaterials generally violate

the two central tenets of macroscopic lattice kirigami:
(a) the bending modulus is nonzero, prohibiting the
formation of sharply folded edges, and (b) the system is
compressible allowing it to store energy in shear and
compressive strains. As a consequence, nanokirigami
introduces a new family of three-dimensional deforma-
tions: the regular faceted structures of macroscopic lattice
kirigami inevitably relax to softly rolling landscapes
evocative of the English countryside. In this Letter, we
study this problem for the prototypical case of graphene
sheets embedding various forms of lattice kirigami and
analyze their three-dimensional shapes by combining large-
scale atomistic modeling [3,4] and analysis using long
wavelength elastic theory [5–7]. The competition between
bend and strain energies poses a challenging minimization
problem for these systems, which we find is resolved
through a compact set of bending rules. These rules, which
are completely absent from the macroscopic variant of this
problem, are essential at the nanoscale and generalize to a
wide family of two-dimensional nanomaterials guiding the
controlled design of desired strain and curvature fields with
a microscopic cut-and-join motif.

Figure 2 compares the out-of-plane deflections of
graphene disks that embed two elementary kirigami prim-
itives. The top panel illustrates the procedure for generating
these structures: all the models embed defects in which
atoms are initially removed from a strip [Fig. 1(a)] that
terminates on a dislocation with nearest-neighbor five- and
seven-membered rings [Fig. 1(b)]. Figures 1(c) and 1(d)
illustrate the relaxation of a (macroscopic) incompressible
model that allows only for sharp folds. The atoms are
reconnected along the dashed line of length d terminating
on dislocations. Under these conditions, removal of the
hole forces the sheet into the third dimensions via
perpendicular creases that vertically displace the left-
and right-hand regions in the same [Fig. 1(c)] or opposite
[Fig. 1(d)] directions. The defect energy in these structures
is confined to the creases so that the “up-up” (uu) and
“up-down” (ud) patterns are degenerate [1]. Starting from
these structures, we minimized the structural energy of an
atomistic model using interaction potentials for carbon
developed by Los and Fasolino (LF) [3,4] which allow
bonds to rupture and reform and provide a reasonable
description of the elastic properties for carbon materials in
diverse bonding environments. The structures we develop
should be distinguished from patterned graphenes retaining
large open perforations designed to allow reversible large
amplitude deformations under mechanical loading [8,9].
They are more akin to the fully bonded defect structures
exhibiting height modulations found on scars that terminate
on dislocation cores found in some single layer graphenes
produced by chemical vapor deposition [10]. Two generic
features of the fully relaxed structures are apparent in the
lower panels of Figs. 1(e) and 1(f). For both defects, we
find a smooth variation in elevation that persists into the far
field with soft pleats sourced by their near-field defect
structures. In the following, we are concerned with the
far-field deflection patterns and examine structural models
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with open boundary conditions and with vertex separation
d much smaller than the lateral system size.
We quantify our observations by decomposing the height

field hðrÞ on a disk of radius R into angular harmonics

hðrÞ ¼
X
m

hmðrÞeimϕ: ð1Þ

Figure 2(a) shows the radial dependence hmðrÞ for the
allowed even m amplitudes in the shape in Fig. 1(e). The
relaxed structure is smooth, suppressing weight in its large
m modes and confining its amplitude to the m ¼ 0;�2
deformations of the disk where h2ðrÞ [Fig. 2(b)] is an
increasing function of r out to the boundary. The bending
energy has an areal energy density ub ¼ κbð∇2hÞ2=2, and
it is extremized by solutions of the biharmonic equation
∇4h ¼ 0. We find that the radial dependences of our
relaxed structures hmðrÞ are well described by linear
combinations of these bend optimized solutions projected
into each angular harmonic subspace. For example, in the
m ¼ 2 subspace, the representation

h2ðrÞ ¼ h−2ðrÞ ¼ a2 þ
b2
r2

þ c2r2 þ d2r4 ð2Þ

describes the shape as shown in Fig. 2(b). Truncating the
expansion (1) to include only the m ¼ 0 and m ¼ �2
solutions provides an excellent reconstruction of the
exact shape as demonstrated in Fig. 3(a). The ud structure
[Fig. 1(f)] similarly relaxes to a smooth landscape
well described by a superposition m ¼ �1;�3 angular
harmonics.
Note that the biharmonic equation admits two solutions

that grow in the far field, and generically these are both
present in the relaxed structures but they always appear

FIG. 1 (color online). Relaxation of a graphene kirigami in
which atoms are removed from a finite strip of a flat graphene
sheet (a), and the atoms are rejoined along a line terminating on
nearest-neighbor pairs of five to seven disclinations (b). In (c) and
(d), this structure is folded into the third dimension following the
rules for macroscopic lattice kirigami. The atoms are rejoined
along the dashed line, inducing sharp creases that separate
plateaus that are displaced out of the plane in the same direction
uu (c) or in opposite directions ud (d). These structures (c) and
(d) relax to the shapes (e) and (f) generating a softly pleated
landscape. The results are for an initial disk radius R ¼ 11.3 nm,
with d ¼ 1.86 nm (panels c and e) and d ¼ 1.87 nm (panels d
and f).

FIG. 2 (color online). (a) The height field for the relaxed uu
structure of Fig. 1(e) is decomposed into its angular harmonics
showing the radial dependence hmðrÞ with dominant contribu-
tions from m ¼ 0;�2. (b) The m ¼ 2 radial dependence is well
described by superposition of four solutions of a biharmonic
equation projected into the m ¼ 2 subspace. The profile contains
two growing solutions with opposite signs which dominate the
deflection in the far field.

FIG. 3 (color online). (a) Reconstruction of the uu surface
retaining only the m ¼ 0;�2 angular harmonics in the height
field. The left side shows a superposition of the exact and
reconstructed surfaces; the right inset gives a line plot along
a coordinate that bisects the two dislocations that define
the kirigami cut. Results are given for R ¼ 12.7 nm and
d ¼ 0.15 nm. (b) Numerical test of the scaling rule Eq. (5) for
the four different disk radii shown.
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with opposite signs. Although it is tempting to attribute this
to a boundary condition enforced at the edge of the disk, we
find instead that this can be more easily understood as a
global constraint on the shape. The growing solutions must
compete in order to avoid a large strain energy penalty
induced by their (locally) nonzero Gaussian curvatures.
Note that a linear combination of the growing solutions in
Eq. (2) makes a contribution to the Gaussian curvature that
is bilinear in the expansion coefficients for h2; explicitly, in
the far field, we have for the determinant of the curvature
tensor

C>2 ¼ −4½c22 þ 6c2d2r2 þ 9d22r
4sin2ð2ϕÞ�: ð3Þ

Following Nelson and Peliti [6], we recall that a coupling of
the local Gaussian curvature to in-plane strain mediates
nonlocal ultra-long-range interactions between remote
Gaussian curvatures diverging in Fourier space ∝q−4.
Consequently, for a large system under open boundary
conditions we can avoid a macroscopic energy that grows
faster than the system size if its integrated Gaussian
curvature vanishes. In the space of m-projected biharmonic
solutions, the residual Gaussian curvature cannot be made
to vanish everywhere, and with zero mean the residual
curvature can be usefully described by its nonvanishing
moments. For m ¼ 2 and using Eq. (3), we find that the
disk-integrated curvature vanishes if the boundary ratio
ν ¼ d2R2=c2 ¼ −0.423, in good agreement with the ratio
(∼ − 0.47) obtained from the numerical calculations. We
carried out similar analysis for different structures and in
various angular momentum channelsm in the expansion (1)
and find that the boundary ratio is m dependent and
consistent with our simulation data.
The surfaces shown in Figs. 1(e) and 1(f) are, therefore,

determined by three rules that resolve the competition
between its bending and stretching energy in the elastically
stiff (weakly compressible) limit: (1) the height field
smooths by relaxing its amplitude to its low-order
symmetry-allowed angular harmonics, (2) the radial
dependence in each m channel superposes biharmonic
bend optimized solutions, and (3) these appear in
“well-tempered” combinations that also avoid a large strain
energy penalty by quenching the integrated Gaussian
curvature. The defect energy is then determined by the
core energy of the terminal dislocations, the bending
energy in the extremal solution, and the strain energy
imposed by its residual Gaussian curvature.
The argument given above fixes the amplitude ratio of

the far-field growing solutions but not their overall magni-
tudes which determine the degree of “warping” of the
kirigamied disk. A scaling argument reveals that the latter is
determined by the boundary energy on the perimeter of the
disk, presumably arising from the inequivalence of bulk
(area) and surface (perimeter) interactions. For example,
a structure with c2 ≠ 0 that results from a boundary

interaction proportional to R and is opposed by a bulk
interaction proportional to R2 is described by an energy
function

U ¼ αR2c22 þ βRc2; ð4Þ

where α > 0 and β are constants, giving c̄2 ¼ −β=2αR. We
can express the growing solutions of Eq. (2) in a scaling
form

h>2
R

¼ −β
2α

��
r
R

�
2

þ ν

�
r
R

�
4
�
: ð5Þ

Thus, for m ¼ 2, by expressing all lengths (h; r) in units of
the disk radius R, one obtains a universal warped shape
determined by the value of β. Note that this scaling rule
is m dependent; i.e., different m’s all show scaling but are
described by different scaling functions. The full shape is
scalable to the extent that it can be described by a single
dominant angular harmonic. In Fig. 3(b), we test this
hypothesis by plotting the scaled height h0 ¼ h>2 =R versus
the scaled radial coordinate r0 ¼ r=R demonstrating its
near collapse to a single profile. We conclude that an
unwarped kirigami profile with no growing solutions is
nongeneric and would require fine-tuning the system to a
special point at β ¼ 0. This is evidently not a property of
the LF potentials for carbon [4] or of any generic model for
the interparticle interactions. Therefore, the kirigamied
disks generally feature a long-distance shape modulation
that cannot be confined to the defect. We interpret this as
the microscopic analog to the step risers in macroscopic
lattice kirigami that also propagate to the sample bounda-
ries and connect the core defect structure with the edge.
It also suggests the possibility of tuning the shape of our
nanoscale variant by functionalizing the boundaries to
control the edge potential parameter β.
These considerations can also be used to understand

the energetics of microscopic kirigami. In macroscopic
lattice kirigami, the edges are sharp and the uu structure
[Fig. 1(c)] is degenerate in energy with the ud structure
[Fig. 1(d)]. Furthermore (ignoring finite size effects from
the termination of creases at the outer edges), the energy of
a uu configuration is independent of the separation (d) of
the dislocations that define the vertices of their plateaus
[Figs. 1(c) and 1(d)] since the sharp steps are nonoverlap-
ping. These features do not apply to microscopic kirigami
where the height profile is smooth and the dislocations
can interact via overlap of their induced curvature fields.
In Fig. 4, we compare the energies of the uu and ud
configurations as a function of the vertex separation d.
(To obtain these data, the relaxation calculations were
carried out on square rather than circular models so that the
number of atoms is the same in each sampled structure.)
The uu configuration is energetically preferred for any
intervertex spacing d. At intermediate separations, the
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energy degeneracy is, in fact, strongly broken; for example,
the energy difference for a separation of ∼20 Å is ≈1.0 eV.
By analyzing these structures within continuum elastic

theory, we conclude that these energy differences arise
from interactions that are mediated nearly entirely by the
mean curvature of the extended overlapping height fields.
The stretching energy, while present is nearly independent
of d, indicating that its role is to simply renormalize the
self-energies in these structures. The interactions between
defects mediated by the bending energy then lead quali-
tatively to the interaction profile shown in Fig. 4. This
behavior is captured even in a lowest-order elastic theory.
We first calculate the Lamé coefficients λ and μ and
bending modulus κb using our model potential giving
the values presented in Table I.
In this expansion, the energy can be partitioned into a

pure bending contribution

Ub ¼
κb
2

Z
d2rð∇2hÞ2 ð6Þ

and a strain term

Us ¼
1

2

Z
d2rð2μu2ij þ λu2kkÞ; ð7Þ

where uij are the linearized strains ð∂iuj þ ∂juiÞ=2. [We
have investigated the role of the nonlinear strain terms that
can appear, Eq. (7), and find that they do not qualitatively
change our conclusions.] Although the contribution from
Us can be formally eliminated in favor of a (strongly)
nonlocal interaction between Gaussian curvatures [6], we
choose instead to simply calculate the energy using the
formula Eq. (7).
In the continuum model, one finds that energy degen-

eracy of the uu and ud geometries is resolved and the uu
configuration always favored. This can be understood if
one regards the height fields of the two defects as additive.
In the uu configuration, the height deformations appear
with opposite signs and nearly cancel in the far field, while
in the ud configuration they interfere constructively.
The bending energy (though not the Gaussian curvature-
induced stretching energy) is quadratic in derivatives of h,
and so the relative sign of the superposed height fields
determines the sign of their interaction. This predicts that
the uu structure has lower energy and favors small d where
the cancellation is more nearly complete (the upturn at
small d in Fig. 4 manifests the nonadditivity of the short-
range deflection fields). Conversely, the height fields in the
ud structure never compensate and favor large d just as
seen in the lattice calculation. This behavior captures the
essential results of the full atomistic calculations (Fig. 4),
but it fails to quantitatively account for their magnitudes, as
can be expected since these structures are actually highly
strained. We also note that our fitted bending modulus in
Table I (κb ¼ 0.70 eV) is in reasonable agreement with
values (∼0.82 eV) previously reported studying bending
energies of graphene sheets using similar empirical poten-
tials [11,12]. The microscopic origin of this bare bending
modulus is discussed in Ref. [12], suggesting that quantum
mechanical models yield a modulus approximately a factor
of 2 larger. Furthermore, the bending modulus is both
predicted [11] and observed [9] to be renormalized upward
by thermal fluctuations in two-dimensional membranes
[11]. All these trends further support our conclusion
that bend-optimized shapes will be realized in graphene
kirigami.
Insights from the bending energetics of nanoscale

kirigami may be useful for stabilizing structures in macro-
scopic kirigami. The degeneracy of the uu and ud motifs is

FIG. 4 (color online). Energies for graphene kirigami as a
function of vertex separation d on a square sample with initial
width L ¼ 22.4 nm (inset). Energies are plotted relative to the
minimum energy of the uu configuration. The uu and ud
configurations are nondegenerate and the bend-induced ud
potential is repulsive. These properties are described qualitatively
by continuum elastic theory where the energy differences and
their dependence on d are determined mainly by the mean
curvature fields in the relaxed structures.

TABLE I. Two-dimensional Lamé coefficients, bulk modulus,
and bending modulus obtained by fitting the structural energies
for deformed graphene sheets using the interatomic potentials of
Los and Fasolino [4].

Elastic constant Fitted value

λ 3.03 eV=Å2

μ 10.67 eV=Å2

B 13.7 eV=Å2

κb 0.70 eV
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problematic for applications that would seek to stabilize a
single target shape. This can be resolved by the introduction
of macroscopic couplings that introduce an effective
bending rigidity. Braces that suppress or promote bending
can be engineered to introduce nonlocal coupling between
neighboring step risers and provide a route to encoding a
unique surface structure.
The analytic structure of our graphene-kirigami solutions

also has important consequences for its Dirac electronic
structure near charge neutrality. In these structures, topo-
logical defects in their bond networks induce surface defor-
mations with bend and (locally) nonzero Gaussian curvature.
Separately, these structural features all couple to electronic
motion in the tangent plane [13–17] where the natural
language for this coupling involves valley asymmetric bend-
and strain-induced gauge fields [16]. The gauge fields
induced bypure bending are curl-free and have the innocuous
effect of simply shifting theDirac points inmomentumspace.
By contrast, Gaussian curvature is topologically nontrivial
and links the systemwith a (valley-dependent) local flux [15].
The essential characteristic of the m-projected solutions
presented above is that a competition between bending
and stretching energies generates a landscape where the
Gaussian curvature is globally compensated (so that the total
pseudoflux is zero), but this canonly beaccomplishedby sign
changes on a network of nodal lines that carry the signature
of the fully relaxed kirigami. The possibility of confining
electronic modes along these lines and their role in defining
the low-energy spectral and transport properties nowpresents
an important problem for further study.
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