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The orbital angular momentum Hall effect and the spin Hall effect of electron vortex beams (EVBs) have
been studied for the EVBs interacting with a laser field. In the scenario of a paraxial beam, the cumulative
effect of the orbit-orbit interaction of EVBs and laser fields drives the orbital Hall effect, which in turn
produces a shift of the center of the beam from that of the field-free case towards the polarization axis of the
photons. In addition, for nonparaxial beams one can also perceive a similar shift of the center of the beam
owing to the spin Hall effect involving spin-orbit interaction. Our analysis suggests that the shift in the
paraxial beams will always be larger than that in the nonparaxial beams.
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The experimental demonstration [1] of the production of
an electron vortex beam (EVB) with an orbital angular
momentum (OAM) projection of up to 200ℏ and energy
∼200–300 keV has resulted in an upsurge in interest of
theoretical physicists to work in this area, which started
with the theoretical prediction of the EVB [2]. In free EVBs
both the spin angular momentum (SAM) and the OAM of
an electron give rise to an intrinsic spin-orbit interaction
(SOI) [3], which is also a topic of recent attraction. The
recent theoretical investigation of the interaction of rela-
tivistic electron vortex beams with laser light [4] is also of
much importance from the aspect of light matter inter-
action. The exact analytical solutions, obtained when the
Dirac-Volkov wave function is used to describe the
monoenergetic distribution of electrons with a well-defined
OAM in the vortex beams, explicitly shows that the OAM
components of the laser field couple to the total angular
momentum of the electron, and the center of the beam is
shifted along the polarization direction of the laser field
with respect to the center of the field-free EVB [4]. In their
analysis they have used the calculation of the probability
density of finding an electron in the beam profile. This
enthralling paper [4] motivated us to probe the physical
mechanism responsible for the above mentioned shift of the
center of the beam. Very recently, we studied [5,6] the
dynamics of field-free EVBs and EVBs in a time dependent
magnetic field, which revealed how the spin Hall effect and
the spin filter configuration of the EVBs arise. In this
formulation, we have utilized the role of the geometric
phase acquired by the scalar electron orbiting around the
vortex line in the geometrodynamics of the EVBs. It is
worth studying the situation where EVBs interact with a
laser field in this framework.
In this Letter, we explore the dynamics of relativistic

electron vortex beams in a laser field from the perspective
of the geometric phase. To this end, we consider the
Skyrmionic representation of a fermion, where an electron
is depicted as a scalar particle moving around the vortex

line, which is topologically equivalent to a magnetic flux
line giving rise to the spin degrees of freedom. The
geometrodynamics [5,6] of the electron vortex beams is
governed by the Berry phase [7] acquired by the scalar
electron moving around the vortex line. This phase term
vanishes when the polar angle θ between the vortex line and
the wave front propagation direction (the z axis) is zero.
The Bessel beam in this case implies that the plane wave
wave vector makes an angle θ0 with the z axis such that it
depicts the situation in the limiting case θ0 → 0. This
corresponds to the paraxial regime of the EVB and in this
case there is no SOI. When such EVBs interact with a laser
field, the OAM Hall effect will arise, inducing a shift of the
center of the beam from the field-free case towards the
polarization axis of the photons. On the other hand, for
nonparaxial beams where the polar angle θ between the
vortex line and the wave front propagation direction (the z
axis) is nonzero, the SOI is switched on and the corre-
sponding Berry phase has a nonzero value. Bessel beams in
this case correspond to the situation when the polar angle θ0
of the plane wave wave vector with the z axis takes a
distinct nonzero value. When the polar angle θ is π=2,
the Berry phase acquired by the scalar electron around
the vortex line involves the quantized monopole charge
μ ¼ 1

2
. However, for any arbitrary angle ½θ ≠ 0; ðπ=2Þ�,

the corresponding Berry phase involves a nonquantized
monopole charge. In this scenario, the Bessel beams
involve tilted vortices having an arbitrary nonzero angle
of the plane wave wave vector with respect to the wave
front propagation direction. It is interesting to note that
the propagation of electron vortex beams in free space
with tilted vortices give rise to the spin Hall effect [5].
When such EVBs interact with a laser field, it is found
that there will be a shift of the center of the beam towards
the polarization axis of the photons due to the spin Hall
effect.
The Dirac equation of an electron coupled to an external

electromagnetic field is given by [8]
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½ð~p − e~AÞ2 −m2 − ieFμνσ
μν=2�ψ ¼ 0; ð1Þ

where p̂μ ¼ ði∂t;−i∇Þ is the electron four-momentum
operator and e is the electron charge, Fμν is the electro-
magnetic field tensor, 2σμν ¼ γμγν − γνγμ, where the γμ’s
are the 4 × 4 Dirac matrices. For a plane wave field AμðζÞ,
with ζ ¼ kx being the laser phase, the exact solution of
Eq. (1) is of the Dirac-Volkov form [8]

ψpðxÞ ¼
�
1þ eðγkÞðγAÞ

2ðkpÞ
�

upffiffiffiffiffiffi
2E

p eiS ð2Þ

with E2 ¼ p2 þm2, where EðpÞ is the energy (momen-
tum) of the electron. Here, S ¼ −ðpxÞ − F þ G with

F ¼
Z

ζ

0

dζ0
e(pAðζ0Þ)

ðkpÞ ; G ¼
Z

ζ

0

dζ0
e2(A2ðζ0Þ)
2ðkpÞ :

ð3Þ
The spinorial variable up denotes the positive energy-
momentum eigenstate of the Dirac equation in the free
space. The spin states of an electron are chosen to be the
eigenstates ws ¼ ðα; βÞT of the σz operator with eigenval-
ues sz � 1

2
. We consider that the electrons and the linearly

polarized photons of the external field propagate antipar-
allel to each other. The propagation of the electron is
chosen to be directed along the z axis so that the laser
propagates backward along z, which implies ζ ¼ ωtþ kz.

The polarization axis of the photons is taken to be in the y
direction. For a monoenergetic distribution of the momen-
tum over some cone with p0 ¼ const and fixed polar angle
θ0 with regard to the propagation axis of the beam, we have
p∥0 ¼ p0 cos θ0 and p⊥0 ¼ p0 sin θ0. Using cylindrical
coordinates in momentum space ~p ¼ ðp⊥;ϕ; p∥Þ ¼
ðp sin θ;ϕ; p cos θÞ, the Volkov-Bessel solutions can be
constructed from the Dirac-Volkov solution given by
Eq. (2) as

ψ lðxÞ ¼
Z

~ψ lð~pÞψpðxÞp⊥dp⊥dϕ; ð4Þ

with

~ψ lð~pÞ ¼ δðp⊥ − p⊥0Þ
eilϕ

2πilp⊥0

: ð5Þ

Integrating Eq. (4) leads to the Volkov-Bessel state [4]

ψ lð~r; tÞ ¼
�
1þ e

2ðkp0Þ
ðγkÞðγAÞ

� Xþ∞

n¼−∞
inJnðf0Þψ lþnð~r; tÞ;

ð6Þ

with f0 ¼ fðp0Þ, where f ¼ R ζ
0 dζ

0ep⊥Aðζ0Þ=ðkpÞ. Taking
into account ξ ¼ p⊥0r, the states ψ lþnð~r; tÞ are given
by [4],

ψ lþnð~r;tÞ¼
eiϕffiffiffi
2

p

2
64
0
B@

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ m

E0

q
ws

ffiffiffiffiffiffiffiffiffiffiffi
1− m

E0

q
σzws cosθ0

1
CAeiðlþnÞφJlþnðξÞþ

0
B@

0

0

A

1
CAeiðlþnþ1ÞφJlþnþ1ðξÞ−

0
B@

0

0

B

1
CAeiðlþn−1ÞφJlþn−1ðξÞ

3
75; ð7Þ

with a phase ϕðz; tÞ ¼ p∥0z − E0t þ Gðp0Þ, spinors
A ¼ ð0; i ffiffiffiffi

Δ
p

αÞT and B ¼ ði ffiffiffiffi
Δ

p
β; 0ÞT , and Δ ¼

½1 − ðm=E0Þ�sin2θ0. These appear as Bessel-type solution
of the Dirac equation with the OAM of an electron in free
space modified as lþ n, where n is an additional OAM due
to a laser.
In the framework of the Skyrmionic model of an

electron, an internal variable is introduced to represent
the direction vector essentially representing a vortex line,
giving rise to the spin degrees of freedom [9,10] where the
spin appears as an SU(2) gauge bundle. This represents a
gauge theoretical extension of the space-time coordinate
which can be written as a gauge covariant operator acting as
functions in phase space

Qμ ¼ −i
� ∂
∂pμ

þAμðpÞ
�
; ð8Þ

where AμðpÞ is the momentum dependent SU(2) gauge
field. Here, pμ denotes the mean momentum of the external

observable space. In this formalism, a massive fermion
appears as a Skyrmion [11,12]. The Berry phase acquired
by the scalar particle after encircling the closed path around
the vortex line, which is equivalent to the magnetic flux
line, is 2πμ, where μ is the monopole charge associated
with the magnetic flux line [13]. When the monopole is
located at the origin of a unit sphere, the Berry phase is
given by ϕB ¼ μΩðCÞ, where ΩðCÞ is the solid angle
subtended by the closed contour at the origin which is
given by

ΩðCÞ ¼
Z
C
ð1 − cos θÞdϕ ¼ 2πð1 − cos θÞ: ð9Þ

Here, θ is the polar angle of the vortex line with the
quantization axis (the z axis). So, for μ ¼ 1

2
, we have the

phase

ϕB ¼ πð1 − cos θÞ: ð10Þ
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This corresponds to the flux associated with the monopole
passing through the surface spanning the closed contour.
Transforming to a reference frame where the scalar electron
is considered to be fixed and the vortex state (the spin state)
moves in the field of the magnetic monopole around a
closed path, ϕB in Eq. (10) corresponds to the geometric
phase acquired by the vortex state. The angle θ represents
the deviation of the vortex line from the z axis. Equating
this phase ϕB in Eq. (10) with 2πμ, which is the geometric
phase acquired by the scalar electron moving around the
vortex line in a closed path, we find that the effective
monopole charge associated with a vortex line having polar
angle θ with the z axis is given by μ ¼ 1

2
ð1 − cos θÞ.

This suggests that for θ ¼ 0 and π=2, μ takes quantized
values, but for 0 < θ < ðπ=2Þ it is nonquantized. When the
vortex line representing the spin axis is parallel to the wave
propagation direction implying θ ¼ 0, so that the Berry
phase vanishes, we have the paraxial vortex beam. For
θ ¼ π=2 the vortex line is orthogonal to the wave front
propagation direction. For other values of θ corresponding
to a nonquantized monopole charge, the vortex line is tilted
in an arbitrary direction. This implies the deviation of the
spin axis from the z axis and represents the anisotropic
feature associated with the system. Bessel beams in this
case involve tilted vortices having a nonzero arbitrary angle
of the plane wave wave vector with respect to the wave
front propagation direction. These three states having
θ ¼ 0; ðπ=2Þ, and ≠ ½0; ðπ=2Þ� correspond to the screw,
edge, and mixed edge-screw dislocations in the optical
vortices, respectively.
Denoting the spatial coordinate of the electron as ~R, we

can write, from Eq. (8) [5,14,15],

~R ¼ ~rþ ~Að~pÞ; ð11Þ
~Að~pÞ ¼ μð~p × ~σ=p2Þ, where ~rð~pÞ is the mean position
(momentum) of the external observable space.
It is well known that the field of an electromagnetic plane

wave with wave vector kμ (k2 ¼ 0) depends on the four
coordinates only in the combination kx ¼ ζ. So, we write
the gauge potential of the external laser field as AμðζÞ. If
AμðζÞ is a periodic function and its time average value
hAμðζÞi ¼ 0, the time average value of the modified
momentum four-vector of the electron Pμ in the laser field
is given by [8]

Pμ ¼ pμ −
e2hA2i
2ðkpÞ k

μ: ð12Þ

The spatial component of the momentum can now be
written as

~P ¼ ~p −
e2hA2i
2ðkpÞ

~k ¼ ~p − α~k ¼ ~p − ~k0; ð13Þ

with α ¼ ½e2hA2i=2ðkpÞ�. If we now consider the situation
of the EVB having a head-on collision with the laser field, ~k
is antiparallel to ~p, so we can write the modified momen-
tum as

~P ¼ ~pþ ~k0: ð14Þ
Thus, from Eqs. (11) and (14), we can write the angular

momentum as

~~L ¼ ~R × ~P ¼ ½~rþ ~Að~pÞ� × ð~pþ ~k0Þ
¼ ~r × ~pþ ~r × ~k0 þ ~Að~pÞ × ~pþ ~Að~pÞ × ~k0

¼ ~L1 þ ~L2 þ ~L3 þ ~L4: ð15Þ

In Eq. (15), ~L1 represents the OAM of the field-free EVB
and ~L2 corresponds to the additional angular momentum n,
which is induced by the laser field. Now, to compute h~L3i,
we write

~L3 ¼ ~Að~pÞ × ~p ¼ μ
~p × ~σ × ~p

p2
¼ −μ~p ×

~p × ~σ
p2

; ð16Þ

where ~σ is the vector of the Pauli matrices. The expectation
value of ~σ is given by

h~σi ¼ hψ j~σjψi
hψ jψi ¼ ~n0; ð17Þ

where ψ is a two-component spinor

ψ ¼
�
ψ1

ψ2

�
ð18Þ

and ~n0 is the unit vector. Thus,

h~L3i ¼
�
μ~p ×

�
~σ × ~p
p2

��
¼ −hμ~κ × ð~κ × ~σÞi; ð19Þ

with ð~p=pÞ ¼ ~κ, ~κ being the unit vector. This gives

h~L3i ¼ −μ~n0: ð20Þ

In addition, as the momentum vectors ~p and ~k0 are

antiparallel to each other, h~L4i ¼ ~k0 × μð~p × ~σ=p2Þ ¼ 0.
The first two terms in Eq. (15) dictate the addition of

OAM n with the field-free OAM l of the EVB due to the
laser field. This is caused by the orbit-orbit interaction
between the intrinsic OAM and the OAM owing to the
external degrees of freedom. The local vortex structure
expðilϕÞ in the field-free wave packet in the Bessel beam
spectrum is now modified as expðil0ϕÞ, where l0 ¼ lþ n,
giving rise to a magnetic monopole type of Berry con-
nection. In terms of ~e, a unit vector orthogonal to ~P, we can
write
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expðil0ϕÞ ¼ ðex þ ieyÞl0 : ð21Þ

It is noted that with the variation of ~P, ~e moves on the unit
sphere ~P=j~Pj, which leads to the monopole-type connec-
tion [16]

~A ¼
�
iðex − ieyÞ

∂
∂ ~P ðex þ ieyÞ

�
; ð22Þ

and the corresponding curvature ~Ωð~PÞ ¼ ð~P=P3Þ. As a
result, we have ~A

ðl0Þ ¼ l0 ~A and ~Ωðl0Þ ¼ l0 ~Ω, indicating that
the charge of the magnetic monopole in momentum space
is given by l0. Noting that the electric field component of the
external field will accelerate the electrons, the momentum
concerned will be time dependent and will lead to an
anomalous velocity as

~va ¼ l0 _~P × ~Ωð~PÞ ¼ l0 _~P ×
~P
P3

: ð23Þ

This will give rise to the OAM Hall effect [16]. Thus,
analogous to the spin-orbit coupling giving rise to the spin
Hall effect, the orbit-orbit interaction between the intrinsic
OAM and the external degrees of freedom gives rise to the
OAM Hall effect. In the case of a paraxial beam, as
mentioned earlier, the Berry phase factor μ vanishes, so
there will be no contribution from h~L3i here, as follows
from Eq. (20). This argument convincingly demonstrates
that a spatial shift of the center of the EVB along the
polarization direction of the photons in the laser field is
caused by the OAMHall effect, and the shift will depend on
the orbital angular momentum. Large values of the orbital
angular momentum can cause a larger amount of shift.
For the analysis of the nonparaxial beams arising out of

the tilted vortices, Eqs. (15) and (20) are used, and we write
the total angular momentum of the EVB in presence of

a laser field as h~~Li ¼ ðlþ nþ μÞ~̂z ¼ ðl0 þ μÞ~̂z. From the
conservation law of the total angular momentum
~~Lþ ~~S ¼ ~Lþ ~S, where ~~S corresponds to the spin vector

with ~L ¼ l0~̂z and ~S ¼ s~̂z, we find that h~~Si ¼ ðs − μÞ~̂z. The
presence of SOI is implied due to the conversion of a part of
the angular momentum from SAM to OAM. The quantized
value of μ ¼ 1

2
corresponds to the relation jμj ¼ s whereas,

for a nonquantized value of μ, the expectation value

h~~Liðh~~SiÞ can take arbitrary values. Indeed, from the relation
of the angular momentum in the presence of a magnetic

monopole ~J ¼ ~L − μ~̂r, it is noted that for a vanishing ~L, the
total angular momentum is μ and for μ ¼ 1

2
we have the

intrinsic angular momentum of the system given by 1
2
,

which is the SAM of an electron with sz ¼ �μ.
The nonquantized value of μ undergoes renormalization

group flow [17,18] following the relation Lð∂μ=∂LÞ ≤ 0,
where L is a length scale. This suggests that, for

nonquantized values of μ (denoted as ~μ), we can consider
it as a continuous function, and at certain fixed points in the
parameter space the monopole charge corresponds to the
quantized values.
We now introduce a noninertial coordinate frame with

basis vectors ð~v; ~w; ~uÞ attached to the local direction of
momentum ~u ¼ ð~P=jPjÞ. This coordinate frame rotates
with the variation of ~P. With respect to a motionless
(laboratory) coordinate frame, such rotations describe a
precession of the triad ð~v; ~w; ~uÞ, with some angular veloc-
ity. At an instant of time, if we take the direction of the
vortex line as the local z axis which represents the direction
of propagation of the wave front, this corresponds to the
paraxial beam in the local frame. In this noninertial local
frame, the local monopole charge will correspond to a
pseudospin. In fact, the expectation value of the spin
operator h~Si ¼ 1

2
ðhψ j~σjψi=hψ jψiÞ undergoes precession

with the precession of the coordinate frame [19]. When
the direction of the vortex line is taken to be the local z axis,
the local value of ~μ is changed and takes the quantized
value jμj ¼ 1

2
owing to the precession of the spin vector, and

thus it corresponds to the pseudospin in this frame. The
pseudospin vector ~S is parallel to the momentum vector ~P.
We can now formulate an anomalous velocity as

~va ¼ μ
_~P ×

~P
P3

: ð24Þ

Thus, the anomalous velocity is perpendicular to the
pseudospin vector and points along opposite directions
depending on the chirality sz ¼ � 1

2
corresponding to

μ > 0ð< 0Þ. This separation of the spins gives rise to
the spin Hall effect. Thus, a tilted vortex line with respect to
the propagation direction in the inertial frame carrying
OAM will give rise to the spin Hall effect, which is caused
by the spin-orbit interaction.
The expression for va in Eq. (24) can be rewritten

in terms of the unit vector ~u ¼ ð~P=j~PjÞ and its time
derivative as

~va ¼ μ
_~P × ~P
P3

¼ μ _~u × ~u: ð25Þ

Denoting ð _~u=j _~ujÞ ¼ ~n1, we note that the spin current is
orthogonal to the local plane (~u; ~n1). The spin current is
orthogonal to the local plane ð~u; ~n1Þ; thus, for a tilted vortex
with respect to the wave propagation direction, the spin
Hall effect is a Coriolis-type transverse deflection. This
leads to a shift of the center of the beam with respect to the
center of the field-free EVB in the case of the nonparax-
ial beams.
In conclusion, we have considered the relativistic EVBs

in a laser field and explored the dynamics of the system
from the perspective of geometric phase. It has been argued
that, in the case of the paraxial beams, a shift of the center
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of the beam in the polarization direction of the laser field is
caused by the OAM Hall effect, whereas for nonparaxial
beams the shift is a consequence of the spin Hall effect. The
arbitrary large integer value of the OAM suggests the
generation of a larger shift in the paraxial case than that in
the nonparaxial case, which conforms with the numerical
estimates given in the work of Hayrapetyan et al. [4]. It may
be added here that the shifts of the center of the beam with
respect to the center of the field-free EVB discussed in
Ref. [4] have been estimated by calculating the probability
density of finding an electron in the beam profile. However,
our geometric phase inspired nontrivial analysis unveils the
dynamics of the shift in terms of the anomalous velocity
that is induced due to the associated Berry curvature in the
Hall effect scenario.
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