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We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales,
can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator
settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which
vanishes in the long time limit. We present the underlying theoretical considerations and numerical
simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.
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Synchronization is probably the most prominent dynami-
cal feature in complex coupled oscillator systems, with a
multitude of facets and applications in various disciplines
such as engineering or biology [1]. Synchronization is often
understood as identical synchronization, in particular, within
the technological and the engineering context. However, the
dynamical manifestation of synchronization in real world
applications can show up in various disguises, e.g., appearing
only in a special feature like the phase of the signal [2] or
involving time lags [3]. At a very general level any motion
which, due to coupling, is attracted to a submanifold in phase
space can be termed as being synchronized [4].

A particularly important application of synchronization is
in the area of control problems. Within the physics context
such a view is vividly illustrated by what has been originally
called time delay autosynchronization, the use of time-
delayed feedback to stabilize periodic orbits [5]. Inspired
by such schemes we tackle here the question of whether two
entirely different dynamical systems have the ability to
mutually stabilize each other by bidirectional coupling via
time-delayed signals. Moreover, we address the aspect of
whether or not this can even be achieved noninvasively which
might sound counterintuitive, considering the heterogeneity
of the oscillators and the dynamical states. In formal terms let
us consider two different systems governed by differential
equations X = f(x) and y = g(y), each of them having an
unstable target state, say a periodic orbit with periods 7 and 6,
respectively. We are going to investigate whether a mutual
time-delayed coupling of the type

x(1) =f(x(1)) — K (y(1) —y(t = 0)).
g0(1) - Ky(x(1) —x(1 - 7)) (1)
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is able to stabilize both target states of the individual units in a
noninvasive way, i.e., with the time-delayed interactions to
vanish when the periodic target states are reached. While in
applications the coupling of the time-delayed signal will be
mediated by matrices, in particular, in cases when x and y
have different dimensions, we will consider for simplicity of
the argument scalar valued quantities K, for most parts of
our theoretical considerations. From a pure mathematical
perspective there are no obvious formal obstacles which
prevent the scheme, Eq. (1), to stabilize periodic orbits of
each unit. However, on physical grounds the scheme looks
intriguing, as a mutual coupling would not affect the trace of
the Jacobian which determines stability properties of unsta-
ble solutions. In addition, the two periods 7 and 6 of the target
states may differ. Rather counterintuitively, we will show that
the diversity of the constituents and not a resonance condition
is a key criterion. In most studies of complex coupled
structures disorder and diversity are often an important
challenge to cope with, see, e.g., [6]. Rather than being a
nuisance we have here a concept in which diversity plays a
vital role for the stabilization to work.

Equation (1) is in fact a particular case of generalized
synchronization, with the synchronization manifold being a
torus defined by the two unstable periodic orbits of the
individual units. We will tackle the synchronization prob-
lem from different sides. The stability problem emerging
from Eq. (1) can be studied in special cases in closed
analytic form. The analytic considerations will reveal some
important mechanisms which we are then going to
reinforce by numerical simulations. Our simulations of
the Toda system serve as a proof of concept study and
indicate the feasibility of the concept. Finally, we demon-
strate the successful implementation of our ideas with
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electronic circuit experiments highlighting the robustness
of the scheme in real world setups. Moreover, the experi-
ments indicate the existence of further parameter regimes,
in which local control, approximately noninvasive, of only
one of the oscillators is achieved.

Linear stability in Eq. (1) is governed by the correspond-
ing variational equation

6x(1) = Df (1)ox(1) — K. (0y(2) = oy(t = 0)).
oy(1) = Dg(1)dy(1) — Ky (6x(1) —ox(1 = 7)), (2)

where the Jacobians Df and Dg inherit the 7z- and 0-
periodic time dependence from the target orbits. In general,
Eq. (2) results in a fairly advanced quasiperiodic eigenvalue
problem, for which the corresponding Lyapunov exponents
are not easy to study by analytic means. Only very few
rigorous regularity results are available for setups which do
not even include time delay, see, e.g., [7]. Nevertheless, by
a simple scaling argument it is fairly obvious that the
control intensities K, and K, contribute to stability not
separately but only as a product KK, if we consider, for
instance, a coupling via scalar quantities. Such a property is
a consequence of the mutual coupling scheme and it has
been proposed as a suitable mechanism to implement a
secure communication channel [8-10].

To make some progress with simple analytic arguments
and to provide a proof of concept let us consider the case
where the time dependence in the Jacobian can be ignored.
That is certainly the case when we consider the stabilization
of fixed points. But even for periodic orbits with f = g and
a scalar coupling of the control force the time dependence
can be removed by an appropriate coordinate transforma-
tion. The analysis of Eq. (2) reduces to the discussion of a
transcendental eigenvalue equation. We can even decouple
the eigenvalue equation if we assume all matrices to
commute. The corresponding quasipolynomial finally
reads

(A= w)(A-v) = KK, (1 —exp(=A7)) (1 - exp(-AF)),
(3)

where ;4 and v are the eigenvalues or the Floquet exponents
of the Jacobians. It is fairly straightforward to check, for
instance, by employing the properties of the Lambert W
function, that Eq. (3) possesses an unstable eigenmode if
identical systems are considered, i.e., u = v, K, = K, and
7 = 0. Thus, a certain amount of diversity is required to
obtain synchronization. The same caveat is likely to apply
for the original time dependent stability problem, Eq. (2).

For an analytical solution of the quasipolynomial,
Eq. (3), and to prove the feasibility of our concept
we constrain to the special case of identical periodic
orbits of period 7z with negative Floquet multipliers,
exp(utr) = exp(vr) < —1, a case which occurs frequently

in the neighborhood of period doubling scenarios. As stated
previously, the obvious choice 7 = @ results in Floquet
exponents with positive real part. Hence, to supply the
required diversity we choose one of the time delays as twice
the proper period, & = 27. Then a simple expansion of
Eq. (3) for small values of 1 = Re(u) and KK, yields for
the leading eigenvalues

2 =2(A+2K,K )2+ 2+ O(K,K,2*) =0, (4

where we have introduced the abbreviation A = z + ix/z.
Hence, real parts change sign and synchronization sets in if
—K,K, > A/(27). In particular, control gains of an opposite
sign are required in this case. Apart from such a perturba-
tive treatment we can work out as well the control domain,
by obtaining a parametric representation of the boundary
from Eq. (3) with the choice A = iQ, see Fig. 1. It does not
come as a surprise that the control interval depends
sensitively on the real part of the Floquet exponent of
the unstable orbit, see, e.g., [11], and that synchronization
in this simple setup fails if that exponent exceeds a
critical value.

Analytic approaches, as seen above, are often only
applicable if one puts severe constraints on the underlying
system. While numerical simulations are never able to fully
prove assertions, we can demonstrate that synchronization
by mutual time-delayed coupling works under conditions
which have not been covered so far. For the purpose of such
a demonstration we resort to driven Toda oscillators,
which can be viewed as a simple, experimentally relevant,
paradigmatic oscillator model [12]. Externally driven
systems, unlike autonomous models, are often more robust
with regard to time-delayed feedback. The equations of
motion are given by

X1 () = x,(1),
X (1) = —rwXa(t) — aylexp (x1(2)) — 1] + A, sin(2xt/7)

— K (3n2(t) = y2(1 - 9)), (5)
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FIG. 1. Exact analytic result for the control domain of two

7-periodic unstable orbits with Floquet exponents y =v =
A+ in/7, diagonal coupling, and time delays € = 27, according
to Eq. (3).
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with the second set of equations being obtained by
exchanging the labels x and y and the periods z and 6,
see Egs. (1). The parameter values y, =y, = 0.5, a, = 20,
A, =33, a, = 30, and A, = 55 are chosen such that each
oscillator without control possesses an unstable periodic
orbit of period 7=1 and 6 =17/1.9 with a Floquet
exponent of moderate size, see the previous section. The
two oscillators admit chaotic dynamics and a stable period-
two orbit, respectively, see Figs. 2(b) and 2(c). With control
gains K, = K, of suitable size each of the unstable orbits
becomes stable and the system synchronizes with no
particular phase relation between both oscillators, see
Fig. 2(a). Initially, the absence of any resonance condition
or phase relation is astounding, but it is mainly due to the
design of the control scheme. The control forces vanish on
the entire torus and thus cannot trigger any phase locking
mechanism. Within the control interval the residual signal,
i.e., the norm of the time-delayed differences, displays the
usual exponential decay in time, see Fig. 2(d). Thus,
ultimately the control becomes noninvasive. The corre-
sponding leading nontrivial Lyapunov exponent, i.e., dis-
carding the two trivial vanishing exponents, shows a
characteristic V-shaped dependence on the control gain,
see Fig. 2(e).

The numerical findings are robust with regard to param-
eter variations. The results are consistent with the analytic
finding that diversity of the constituents is a major con-
dition for the synchronization to work. Furthermore,
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FIG. 2 (color online). Numerical simulation of the Toda system,
Egs. (5). (a) Time traces of the synchronized state for K, =
K, = 1.15 (for other parameter values, see the text). (b),(c) The
motion in the phase plane of each oscillator without control
(bronze) and with control (blue and red). (d) Time dependence of
the residual signal. The shaded region indicates the period where
control K, = K, =1.15 is applied. (¢) Dependence of the
leading nontrivial Lyapunov exponent on the control gain as
estimated from the exponential decay of the residual control
signal (the two vanishing Lyapunov exponents are not displayed).

success does not depend on a particular resonance con-
dition between the periods of the orbits and thus stabilizes a
proper torus solution.

To test the robustness of the scheme and its implement-
ability in real-world systems, we performed experiments in
nonlinear electronic oscillators. The experimental system
comprises two diode oscillators coupled via digital delay
lines. Details of the electronic oscillators and the delay lines
can be found in [13]. The dynamics of each uncoupled
oscillator is similar to the dynamics of the Rossler
system. Each oscillator has three effective degrees of
freedom which are time-dependent voltages, (x;,x,,x3)
and (yy, y», v3). The oscillators are designed to be identical
within the tolerances of the individual elements in the order
of 1%. A sufficient degree of diversity can be achieved by
detuning a single parameter. By increasing the parameter of
the individual uncoupled oscillators, their dynamics under-
goes a bifurcation route starting from a trivial steady state,
through a Hopf bifurcation into a periodic orbit and through
a Feigenbaum cascade of period-doubling bifurcations into
chaos.

As for the coupling we choose x,(¢) and y,(z) to be
transmitted via the delay lines, so that the control signals
A(t) =x(t) = xa(t —7) and A(1) = ys(t) = y2(t = )
are injected in the input of the corresponding component
in the opposite oscillator, respectively. Thus, we have
realized a coupling according to Eq. (1) with two 3 x 3
coupling matrices containing a single nonvanishing
element on the diagonal which, for simplicity, we call
K, and K, again. The setup allows for an automatic
setting of K,,K, € [~1,1] in units of the time constant
@y = 10 kHz of the circuits.

With different combinations of the parameters, we search
for mutual stabilization of unstable orbits. As a first
observation, we find that for identical systems stabilization
is not achieved, in accordance with our theoretical argu-
ments. As revealed by our previous analytic considerations,
cf., e.g., Fig. 1, constraints on the size of the Lyapunov
exponent are expected for successful control. Hence, we
set the control parameter of one oscillator slightly above
the point of the supercritical Hopf bifurcation, so that the
dynamics without control shows a periodic orbit and
the fixed point at the origin is unstable. The parameter
of the other system is set above the first period-doubling
bifurcation, with dynamics showing a stable period-two
orbit spreading around the unstable period one. In the
absence of control, the exponential growth rate of transients
starting close to these unstable objects reveals their insta-
bility, which for the steady state is about 2 orders of
magnitude lower than for the period-one orbit. The target of
our control is the joint orbit consisting of the unstable fixed
point and the unstable period-one orbit, see Fig. 3 (top
row). The delay corresponding to the signal from the
periodic orbit is set to its period, 8 = T, while for the
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other delay time we choose 7 ~ T, /6. In the K ,-K, control
parameter plane, the control domain is located in the region
of KK, < 0, similar to the findings by the simple analytic
argument above. We restrict our experiment to only one of
the two possible combinations of the coupling gains,
because the dynamics showed to be experimentally indis-
tinguishable when the signs of the gains are switched. This
is consistent with our theoretical considerations where we
found that stability does not depend on the individual
control gains but on the product K, K.

For fixed parameters and delay times, we scan the
parameter plane of the coupling gains. To set well-defined
initial conditions, we implemented for each pair (K, K) a
sequence of gain parameters that first lead to successful
control of the unstable orbits, so that the trajectories start
from well defined initial conditions close to the target state.
After transients decay, we record simultaneously the
signals x, (1) and y,(7), as well as the outputs of the delay
lines A, (7) and A, (7). The measured time series indicates
the smallness of the control signals when successful control
is applied, see Fig. 3 (middle row).

Figure 3 (bottom row) shows the root mean square of the
control signals over the parameter plane. Overall, the
hyperbolic shape of the dominant bifurcation structures
proves the relevance of the product KK, for the control
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FIG. 3 (color online). Experimental data from coupled elec-
tronic circuits: left, oscillator close to the Hopf bifurcation; right,
oscillator close to the flip bifurcation. Top, projection of the
motion to the phase plane without control (bronze) and with
control K, = —-0.27, K, = 0.92 (blue and red). Middle, time
traces of the control signal without (bronze) and with control
(blue and red). Bottom, root mean square of the control signal in
dependence of the coupling gains.

configuration. The recorded values of the root mean square
range over 3 orders of magnitude, where the maximum
values of about 10 V correspond to the size of an
uncontrolled chaotic attractor, and the minimum of
10 mV is the noise floor of the setup corresponding to
perfect control or an unperturbed stable steady state. Values
below 100 mV can be regarded as successful noninvasive
control. In particular, with regard to the target of our
control, the hyperbolic region around K,K, ~ —0.25, in
which both difference signals are clearly low, can be
accounted for as a region of successful noninvasive control.
Interestingly, the quality of control changes along curves of
KK, = const, a feature which is predominately related to
the structure of the eigenmodes which are excited by the
noise in the system and which are, unlike the Lyapunov
exponent A, not an invariant along such a curve.

It is worth mentioning that the experimental results
indicate another mutual control phenomenon, which relies
on symmetry breaking and goes beyond the presented
analytical considerations. For small values of K, appa-
rently, the steady state is controlled with high accuracy,
while in the other system the period-one orbit is not
controlled. This means that the steady state system sends
its control signal A (7) to the other system with a high gain
K, transmits this signal in the neighborhood of the stable
period two, and receives an invasive signal scaled down by
K. Overall, the feedback still contains enough information
to control the steady state. Although the resulting asym-
metric control of one unstable object through an uncon-
trolled counterpart is, in principle, invasive, the resulting
control is experimentally of high quality and in terms of
remaining difference signals indistinguishable from a
noninvasive control.

In conclusion, we have designed and implemented a
mutual time-delayed coupling scheme to synchronize
heterogeneous systems, e.g., to stabilize a torus solution.
Quite counterintuitively, diversity of the constituents is a
key for success, and our basic study is supported by
analytical arguments, numerical simulations, and a suc-
cessful experimental case study. The coupled system shows
rich dynamical behavior, for instance, rather subtle linear
stability properties of quasiperiodic motion and various
experimental features beyond the scope of this study. It is
rather straightforward to generalize the current setup for
complex coupled heterogeneous networks. Thus, the
scheme opens up the possibility for a systematic analytical
and experimental study of time delay dynamics and
synchronization in coupled systems, with related substan-
tial benefit and insight for interacting complex time delay
dynamics.
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