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Replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use
today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts
of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate
the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that
addresses some of these challenges. The key feature of our approach is to inform the simulation with
readily available, but commonly unused, information on the density of states of the system as the RE
simulation proceeds. This enables two improvements, namely, the introduction of resampling moves that
actively move the system towards equilibrium and the continual adaptation of the optimal temperature set.
As a consequence of these two innovations, we show that the configuration flow in temperature space is
optimized and that the overall convergence of RE simulations can be dramatically accelerated.
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Sampling the phase space of Hamiltonians to estimate
thermodynamic properties is one of the fundamental prob-
lems in statistical physics. However, direct approaches often
dramatically fail due to the presence of large free-energy
barriers between different regions of phase space. While
manymethods havebeen proposed to address this challenge,
fewhavehadan impact as significant as the replica-exchange
(RE) method [1–4]. Indeed, since its introduction, RE has
established itself as a workhorse in atomistic and coarse-
grainedsimulationsandiscurrentlyusedtoinvestigatea large
variety of systems in many areas, ranging from statistical
physics [5–7], over biology and chemistry [8–10], to
solid-state physics and materials science [11–13].
RE enhances the exploration of phase space by using a set

of N individual simulations (often called “walkers”) that
evolve through Monte Carlo (MC) or molecular dynamics
(MD) updates under different external parameters. For
example, each walker might run at a different temperature
Ti (1 ≤ i ≤ N), which is the situation we consider in the
following (in this context, RE is often referred to as parallel
tempering).After predefined time intervals τRE, the exchange
of the current microstates between pairs of walkers is
attempted and carried out with an appropriate probability,
WaccðUi; UjÞ ¼ min½1; eΔβΔU� in the case of canonical
walkers, where βi ¼ ðkBTiÞ−1 are the inverse temperatures
of the heat baths andUi the internal potential energies of the
microstates. This exchange mechanism promotes configu-
rational mixing by exposing replicas to external conditions
(e.g., high temperatures) where free energy barriers can
easily be overcome. It further provides a means for thermo-
dynamic information to be transferred to conditions where
the convergence of direct MC or MD simulations would
require prohibitively long simulation times.
The exchange probabilities in RE strictly comply with

detail balance, which ensures that the proper canonical

distributions will be sampled at all temperatures. This
property is extremely useful because samples taken at each
temperature can be used without reweighting. It can,
however, be restrictive, especially in the early stages of
a simulation, when systems are far from equilibrium. This
is related to the fact that conventional RE does not provide a
natural mechanism for integrating and exploiting informa-
tion that becomes available during the simulation.
In this Letter, we show how one such inexpensive

and readily available source of information—namely,
concurrent estimates of the density of states, gðUÞ—can
significantly improve conventional RE. We leverage the
(approximate) knowledge of gðUÞ in two ways. First, we
introduce a resampling operation akin to a Gibbs sampling
move, which samples according to the gðUÞ-inferred
canonical distribution over an ensemble of configurations
previously visited by any replica, thereby explicitly steering
the system toward equilibrium. Second, we use estimates
of gðUÞ to continuously improve the temperature set
fTig. Because resampling breaks correlations along indi-
vidual trajectories on each replica, the temperature set can be
made optimal with respect to diffusion in temperature
space [14].
The enabling factor of our approach is the concurrent

estimation of the density of states gðUÞ. While it can be
obtained by a number of techniques [15–18], we here rely on
ideas from the adaptive biasing force (ABF) formalism [19]
for MD simulations. The key is to frame the problem as the
estimation of the free energy FβðUÞ ¼ −kBT ln½gðUÞ
expð−βUÞ� through its derivative s, which can be written
in terms of microcanonical averages [19] as

sðUÞ ¼ dF
dU

¼ −
�
d
dt

ðw · pÞ
�

U
; ð1Þ
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with p being the vector of momenta and w ¼
∇U=ð∇U ·∇UÞ. Here, the derivative with respect to time
is understood to be a derivative along a microcanonical
trajectory. In practice, dðw · pÞ=dt is measured periodically
(sayevery100 time steps) and is storedwith its corresponding
value ofU.We then use binned averages to reconstruct sðUÞ.
By integration, we recover FβðUÞ, and hence gðUÞ [20].
In an alternative representation, sðUÞ can be used to
define a microcanonical temperature observable: TmðUÞ ¼
T0=½1 − sðUÞ�, where T0 is the heat-bath temperature. By
integrating the thermodynamic relation 1=TmðUÞ ¼
dSðUÞ=dU, with SðUÞ ¼ kB ln gðUÞ, one reaches the same
result. Note that if the momenta are unavailable, e.g., when
using MC dynamics, a configurational temperature TmðUÞ
can be estimated based on structural data alone [21–23]. The
costof estimatingsðUÞ isnegligible inpractice.Anadvantage
of this approach is that the validity of Eq. (1) does not depend
on the sampling being carried out in any particular ensemble:
the only requirement is that the dynamics yields equal
probabilities of observing different configurations with the
same U. To minimize the impact of initial—potentially far-
from-equilibrium—states on the estimator at later times, we
introduce a memory time (much larger than all other time
scales) after which measurements are discarded.
While in the ABF method [19], sðUÞ is used to create a

multicanonical ensemble, we instead leverage it in our
density-of-states-informed RE scheme (g-RE) in the fol-
lowing ways. While leaving the original RE mechanism
untouched, we first introduce an additional, global resam-
pling move (executed after time intervals τresamp) by which
the microstate of a replica is resampled from the ensemble
of configurations visited by any of its peers at any time in
the past. In practice, this is enabled by a global configu-
ration database populated by all walkers during the
simulation. A configuration is selected from the database
with a probability proportional to its estimated canonical
weight PβiðUÞ ¼ gðUÞ exp½−βiU�. This is akin to an
approximate Gibbs sampling [28,29]. What is crucial here
is that the PβiðUÞ are inferred from global thermodynamic
information, so that it can differ from the distribution
locally sampled by the corresponding walker. In other
words, this operation actively steers the distributions
towards what is globally deemed equilibrium. It does so
by allowing for the replication of thermodynamically
relevant states, in contrast to conventional RE where
configuration can only diffuse in configuration space. As
will be shown below, resampling proves essential for
convergence in the neighborhood of strong phase transi-
tions and for the timely escape out of metastable states. One
might, however, wonder whether g-RE produces correct
statistics, as resampling does not a priori obey global
balance when the configuration database is finite. In fact,
the only requirement for correctness is that any two states
with the same U have the same probability of eventually
being observed during an arbitrary long simulation.

As discussed in the Supplemental Material [23], this
remains the case when resampling is introduced, as long
as the samplers on each replica (e.g., Langevin MD or
Metropolis MC) are ergodic and canonical in and of
themselves. In that limit, gðUÞ, as obtained through
Eq. (1), will converge to the correct value. From the
knowledge of gðUÞ and from a sample of observed configu-
rations, any canonical quantity can then be obtained. It is,
however, important to note that resampling introduces
correlations between the configurations stored in the data-
base at a specific point in time and, hence, potentially also
between replicas. Our approach exploits these correlations to
share information between replicas. However, resampling
too frequently will lead to statistical inefficiencies. The
optimal choice of τresamp will be discussed in future works.
The availability of gðUÞ also enables a second innova-

tion: the continuous optimization of the temperature set
fTig. The overall goal here is to minimize the round-trip
time for replicas to wander between low and high temper-
atures. Much effort has been (and is still) dedicated to
addressing this issue (see Refs. [14,30–36] for examples).
From this body of work it emerges that performance is
often characterized in terms of two key concepts: the
average exchange acceptance probabilities Waccði; iþ 1Þ
between pairs of neighboring temperatures and the flow
ratio fðiÞ ¼ nupðiÞ=½nupðiÞ þ ndownðiÞ�, i.e., the fraction of
replicas that diffuse up in temperature for a given walker i
(a replica is said to flow upwards if it has visited the
minimum temperature more recently than the maximum
temperature; cf. Refs. [31,32]). In the probability-centric
view [14,33,35], the objective is to find the fTig such that
Waccði; iþ 1Þ ¼ const, ∀i, the insight being that locally
low acceptance probabilities would limit the free diffusion
of replicas. In the flow-centric view [31,32], the optimal set
fTig is such that fðiÞ ¼ 1 − ½ði − 1Þ=ðN − 1Þ� (for
Ti < Tiþ1, ∀i), as this indicates an unimpeded flow of
replicas. In contrast, the presence of a bottleneck would
signal itself by comparatively flat regions separated by a
sharp drop in fðiÞ. The two approaches have been con-
trasted by Nadler and Hansmann [14], who showed that, in
the special case where the dynamics on each replica
become completely uncorrelated between exchange
attempts, the optimal choice is to make the exchange
probabilities constant, as this minimizes the round-trip
time from the lowest to the highest temperature.
Furthermore, the flow ratio will also be linear in this case.
In the current context, this limit can be approached by
setting τresamp ¼ τRE, as resampling decreases correlations
(as long as τRE is not so short as to saturate the database
with near-identical configurations). In g-RE, the optimal
temperature set can easily be determined. Holding the
minimal and maximal temperatures fixed, we apply a
bisection scheme until fTig converges to a situation where

Wm
accðPiþ1; PiÞ ¼

Z
∞

−∞
PβiðUÞ

Z
∞

−∞
WaccðU;U0Þ

× Pβiþ1
ðU0Þ dU dU0 ¼ const; ∀i ð2Þ
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(see the Supplemental Material [23] for more details). Here
also, the PβiðUÞ’s are based on the current estimator of
gðUÞ, and Eq. (2) can be evaluated numerically. This
scheme is very fast in practice and does not require any
preliminary calculation. We continuously readjust the
temperatures at intervals τadapt, assisting convergence in
situations where the walkers begin far from equilibrium.
Note that adaption of the fTig does not interfere with the
averages necessary for the measurement of sðUÞ, as
samples taken at different temperatures can be seamlessly
integrated through Eq. (1).
We now demonstrate the performance of our method on

a system of 500 silver atoms. The N ¼ 71 walkers are
canonical molecular dynamics runs with a time step of
τts ¼ 2 fs, and the heat-bath temperatures are set by
Langevin thermostats. Atoms interact via an embedded-
atom potential [37]. The simulation cell is cubic and
periodic boundary conditions are used in all directions.
The minimum temperature is set to Tmin ¼ 100 K and the
maximal to Tmax ¼ 3500 K. The particle density is fixed at
ρ ¼ 0.0585 Å−3, which corresponds to the density that
minimizes the energy of the fcc crystal; the fcc configu-
ration is therefore the putative global energy minimum for

this system and should dominate up to the vicinity of
the melting point, given that the thermal concentration
of defects is expected to be vanishingly small. However,
all walkers are initialized from a quenched liquid
(amorphous) configuration. This choice makes the system
a very good prototype of a case where the thermodynami-
cally relevant configurations are unknown a priori and are
difficult to access. Indeed, from MD studies of metals
(e.g., Ag [38–40], Cu [41], Ni [42], etc.), it is known that
recovering the perfect crystalline state from the melt
requires very slow cooling; otherwise, the system remains
trapped in amorphous states (at fast cooling) or in a mixture
of fcc and hcp regions separated by stacking defects (at
moderate cooling rates). In addition, the presence of a first-
order transition (melting) within the range of temperatures
makes this an extremely challenging system to study.
Finally, since the thermal concentration of crystal defects
is expected to be vanishingly small in a system of that size
away from the immediate vicinity of the melting point, the
validity of the results is easy to assess.
As illustrated in Fig. 1, the coupling of the different

replicas through the estimator of gðUÞ and the configura-
tional database directs the evolution of the system towards

FIG. 1 (color online). Convergence of TmðUÞ at different simulation times (a) shortly after the start of the run and after the first pure
crystalline states have been discovered; (b) as these states get replicated and move the spurious transition between pure and faulted states
upwards in temperature; and (c) after convergence of the g-RE scheme. The dots in (a) show individual measurements; different colors
correspond to different walkers (only a subset of data from every other walker is shown). The solid red line shows TmðUÞ, the dashed
black line the same obtained from an equivalent, conventional RE run (for comparison). The shaded bands in (a) to (c) are guides for the
eyes and denote the types of configurations predominantly found in each of these regions, as indicated by the different labels. (d) shows
the estimated canonical distribution PβiðUÞ, at the time corresponding to (b), as obtained from global data (the solid red line) compared
to what would be inferred by an isolated walker trapped in faulted states (the dotted black line).
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thermal equilibrium by enabling the replication of thermo-
dynamically relevant, crystalline states, in contrast to
conventional RE, where states are only exchanged. In that
figure, we report the instantaneous estimators of the
microcanonical temperature TmðUÞ at different times in
the simulation. In our example, the perfect crystalline states
(the upper, purple band) are essentially the only relevant
ones below the melting point; they are, however, by
construction not present in the early stages of the simu-
lations. While, at lower temperatures, the system quickly
leaves the amorphous region of phase space (the lower,
pale blue band) and crystallizes, most of these crystalline
configurations initially contain stacking faults (the middle,
pink band) that take a very long time to anneal.
Convergence of standard RE requires the perfect crystalline
state to be independently found at least (and ideally much
more than) n<melt times (the number of walkers for which
Ti < Tmelt). The rate at which this occurs hence controls the
convergence speed; from standard RE we infer this rate to
be of the order 108 s−1 and the convergence would require
approximately 2.5 × 108 MD steps. In contrast, resampling
enables the replication of the pure crystalline state as soon
at it is found once by any replica. As illustrated in Fig. 1(d),
this occurs because the global estimate of gðUÞ eventually
contains contributions from the crystalline region that are
locally invisible to a walker trapped in faulted states.
Computational gains follow because the probability of
resampling a crystalline state significantly exceeds that
of a replica independently finding it.
The same is true around the melting transition, which is

initially biased to lower temperatures due to the initializa-
tion from a quenched liquid (note that the melting point at
constant volume is much higher than the triple point).
Before equilibration, a spurious transition between perfect
crystals and faulted states [the sudden drop in TmðUÞ at low
energies] is observed and the melting temperature is
underestimated. This is illustrated in Figs. 1(a) and 1(b)
(the red solid lines). A particular advantage of continuous
temperature adaptation is that the temperature set remains
nearly optimal at all times, even as the position of the
(spurious or real) phase transitions evolve during conver-
gence. With g-RE we observe convergence at tMD ≈ 4 ×
107 MD steps, while conventional RE, even with temper-
ature adaptation (the black dashed lines), still mainly
samples faulted states. The temperature adaptation scheme
is very robust and converges quickly, even for a poor choice
of the initial set fTig (see Ref. [23]).
Finally, Fig. 2 shows how the introduction of global

resampling at time scales comparable to the RE exchange
time (τresamp ≈ τRE ∼ 102τts) and an adaptive temperature
set results in an optimal flow of the replica through
temperature space; i.e., both constant Wm

accði; iþ 1Þ and
linear fðiÞ are observed [Fig. 2(d)]. The measured round-
trip times (τmrt ≈ 14000τRE) are in perfect agreement with
measured round-trip times for a purely random exchange

process with corresponding exchange probabilities, which
here correspond to the optimal limit [14]. As shown in
Figs. 2(a)–(c), these two conditions can only be obeyed
when using both temperature adaptation and resampling. In
this sense, our work integrates earlier efforts [31,32,35],
where either constant exchange times, exchange rates, or
the optimal flow had to be sacrificed.
In conclusion, we introduce a general scheme, g-RE, that

can dramatically improve the efficiency of RE simulations.
The method is based on the idea of informing RE
simulations with estimators of the density of states gðUÞ
gathered on the fly. This allows for two key improvements:
the introduction of a global resampling move that guides
the system towards equilibrium and causes a dramatic
reduction of correlation times of the sampling, and the on-
the-fly determination of an optimal temperature set that
simultaneously achieves constant exchange probabilities
and linear flow ratio. We expect our method to be
particularly useful for any system with dominant but hard
to access states or around strong first-order transitions. So
far, there have been two approaches to such problems:
either to change the ensemble (see Refs. [33,43] for
examples) or to introduce global MC trial moves. In the
former case, one often chooses to work in the multi-
canonical ensemble where PðUÞ ¼ const; creating such
an ensemble is in fact a common way to leverage the
knowledge of gðUÞ. This approach, however, is not optimal
for the system reported here because, even though that
ensemble is free from gradients of FðUÞ, the energy
landscape locally remains extremely rough, thereby
severely limiting the diffusivity in U. Using diffusion in
T space to promote mixing proved a more efficient

FIG. 2 (color online). Measured RE acceptance rates
[Wm

accði; iþ 1Þ; the green curves] and fraction of replicas diffusing
from the lowest to the highest temperature [fðiÞ; the red curves]
for the 500 Ag atoms system. (a,c) Fixed, geometric temperature
set. (b,d) Adaptive temperature set. (a,b) Nonergodic sampler:
τresamp ≫ τRE. (c,d) Ergodic sampler: τresamp ≈ τRE.
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alternative. Nonetheless, it still required the introduction of
a global move to insure convergence. We here proposed a
generic solution for constructing such a global move that
does not require any a priori information about the system.
We hence expect this approach to be useful for a wide range
of systems and to also be applicable to RE schemes using
other ensembles [9,12,44–47].
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