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Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are
perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the
second law of thermodynamics, this arrow of time is associated with a positive mean entropy production.
Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated
spin-1=2 system following fast quenches of an external magnetic field. We experimentally demonstrate that
it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic
process and its time reversal. Our result addresses the concept of irreversibility from a microscopic quantum
standpoint.
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The microscopic laws of classical and quantum
mechanics are time symmetric, and hence reversible.
However, paradoxically, macroscopic phenomena are
not time-reversal invariant [1,2]. This fundamental asym-
metry defines a preferred direction of time that is
characterized by a mean entropy production. Regardless
of the details and nature of the evolution at hand, such
entropy production is bound to be positive by the second
law of thermodynamics [3]. Since its introduction by
Eddington in 1927 [4], the thermodynamic arrow of time
has not been tested experimentally at the level of a
quantum system.
Introduced by Clausius in the form of an uncompensated

heat, the importance of the entropy production in non-
equilibrium statistical physics was recognized by Onsager
and further developed by Meixner, de Groot, and Prigogine
[5]. Defined as Σ ¼ βðW − ΔFÞ, for a system at constant
inverse temperature β ¼ 1=ðkBTÞ, where W is the total
work done on the system and ΔF the free energy difference
(kB is the Boltzmann constant), it plays an essential role in
the evaluation of the efficiency of thermal machines, from
molecular motors to car engines [3].
Starting with Boltzmann’s work on the so-called H

theorem, the quest for a general microscopic expression
for the entropy production, especially far from equilibrium,
has been a challenge for more than a century [1]. In the last
years, formulas for the entropy production and entropy
production rate in terms of the microscopic density operator
ρ of a system have been obtained for relaxation [6],
transport [7], and driven processes in closed and open
quantum systems [8,9]. At the same time, the recent

development of fluctuation theorems [10,11] has led to a
sharpening of the formulation of the second law.
Regardless of the size of a system, the arrow of time
originates from the combination of an explicit time
dependence of the Hamiltonian of the system and the
specific choice of an initial equilibrium state. While the first
ingredient breaks time homogeneity (thus inducing the
emergence of an arrow of time), the second specifies its
direction [12].
In small systems, thermal and quantum fluctuations are

both significant, and fluctuation theorems quantify the
occurrence of negative entropy production events during
individual processes [13]. In particular, the average entropy
production hΣi for evolution in a time window τ has been
related to the Kullback-Leibler relative entropy between
states ρFt and ρBτ−t along the forward and backward (i.e.,
time reversed) dynamics [14–16] (see Fig. 1). Explicitly,

hΣi ¼ SðρFt ∥ρBτ−tÞ ¼ tr½ρFt ðln ρFt − ln ρBτ−tÞ�: ð1Þ

The above equation quantifies irreversibility at the micro-
scopic quantum level and for the most general dynamical
process responsible for the evolution of a driven closed
system. A process is thus reversible, hΣi ¼ 0, if forward
and backward microscopic dynamics are indistinguishable.
Nonequilibrium entropy production and its fluctuations
have been measured in various classical systems, ranging
from biomolecules [17] and colloidal particles [18] to
levitated nanoparticles [19] (see Refs. [20,21] for a review).
Evidence of time asymmetry has been further observed in
a driven classical Brownian particle and its electrical
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counterpart [22]. However, quantum experiments have
remained elusive so far, owing to the difficulty to measure
thermodynamic quantities in the quantum regime. To date,
Eq. (1) has thus never been tested.
In this Letter, we use a nuclear magnetic resonance

(NMR) setup to provide a clear-cut assessment of Eq. (1)
where hΣi and SðρFt ∥ρBτ−tÞ are tested and evaluated inde-
pendently. Our methodological approach is founded on
the reconstruction of the statistics of work and entropy,
following a nonequilibrium process implemented on a two-
level system, therefore assessing the emergence of irre-
versibility (and the associated arrow of time) starting from a
genuine microscopic scale.
We consider a liquid-state sample of chloroform, and

encode our system in the qubit embodied by the nuclear
spin of 13C [23–25]. The sample is placed in the presence of
a longitudinal static magnetic field (whose direction is
taken to be along the positive z axis) with strong intensity,
B0 ≈ 11.75 T. The 13C nuclear spin precesses around B0

with Larmor frequency ωC=2π ≈ 125 MHz. We control the
system magnetization through rf-field pulses in the trans-
verse (x and y) directions [25]. The initial thermal state ρeq0
of the 13C nuclear spin (at inverse temperature β) is
prepared by suitable sequences of transversal radio-
frequency (rf)-field and longitudinal field-gradient pulses.
We use the value kBT=h ¼ 1.56� 0.07 kHz (correspond-
ing to an effective temperature of T ≃ 75� 3 nK) through-
out the experiment for the initial 13C nuclear spin thermal
states. A sketch of the experimental setup is provided
in Fig. 2.
The system is driven out of equilibrium to the state ρFτ by

a fast quench of its Hamiltonian (denoted as HF
t in this

forward process) lasting a time τ. We experimentally realize

this quench by a transverse time-modulated rf field set at
the frequency of the nuclear spin. In a rotating frame at the
spin Larmor frequency, the Hamiltonian regulating the
forward process is

HF
t ¼ 2πℏνðtÞ½σCx cosϕðtÞ þ σCy sinϕðtÞ� ð2Þ

with σCx;y;z the Pauli spin operators, ϕðtÞ ¼ πt=ð2τÞ, and
νðtÞ ¼ ν0ð1 − t=τÞ þ ντt=τ the (linear) modulation of the
rf-field frequency over time τ, from the value ν0 ¼ 1.0 kHz
to ντ ¼ 1.8 kHz. With these definitions, the initial thermal
state of the 13C system is ρeq0 ¼ expð−βHF

0 Þ=Z0, where Z0

is the partition function at time t ¼ 0.
In order to reconstruct the work and entropy production

statistics of the 13C quenched dynamics, we use the method
proposed in Refs. [26–28] and illustrated in detail in
Ref. [29]. We consider an ancillary qubit embodied by
the 1H nuclear spin of our sample (Larmor frequency
ωH=2π ≈ 500 MHz) and exploit the natural scalar coupling
between the 1H and 13C nuclear spins to implement the
interferometer needed to reconstruct the statistics of the
work done by 13C following the quench [29]. The method
assumes a unitary dynamics of both system and ancilla, a
condition that is met with excellent accuracy in our
experiment. In fact, the spin-lattice relaxation times,
measured by the inversion recovery pulse sequence, are

FIG. 1 (color online). A quantum system (with Hamiltonian
HF

0 ) is initially prepared in a thermal state ρeq0 at inverse
temperature β. It is driven by a fast quench into the non-
equilibrium state ρFτ along a forward protocol described by the
HamiltonianHF

t . In the backward process, the system starts in the
equilibrium state ρeqτ corresponding to the final Hamiltonian HF

τ

and is driven by the time-reversed HamiltonianHB
t ¼ HF

τ−t to ρBτ .
The entropy production hΣi at time t is given by the Kullback-
Leibler divergence between forward and backward states ρFt and
ρBτ−t [cf. Eq. (1)].

FIG. 2 (color online). We show a section of the magnetometer
employed in our NMR experiment. A superconducting magnet,
which produces a high intensity magnetic field (B0) in the
longitudinal direction, is immersed in liquid He, surrounded
by liquid N in another vacuum separated chamber, in a thermally
shielded vessel. The liquid sample (inside a 5 mm glass tube) is
placed at the center of the magnet within the rf coil of the probe
head. A digital electronic time-modulated pulse induces a trans-
verse rf field (B1) that drives the 13C nuclear spins out of
equilibrium. In the forward (backward) protocol, the rf coil can
perform (retrieve) work on (produced by) the nuclear spin
sample. Depending on the speed of the modulation of the driving
field, irreversible entropy is produced. The sketch is not in scale
and has been stripped of unnecessary technical details of the
apparatus.
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ðT H
1 ; T

C
1 Þ ≈ ð7.36; 10.55Þ s. The transverse relaxations,

obtained by the Carr-Purcell-Meiboom-Gill pulse
sequence, have characteristic times ðT H

2 ; T
C
2 Þ≈

ð4.76; 0.33Þ s. We thus study processes of maximal dura-
tion τ ∼ 10−4 s and consider total data acquisition times for
the reconstruction of the work and entropy statistics within
0.1 and 126 ms, being smaller than T H;C

1 . This enables us to
disregard any energy exchange with the system environ-
ment during the quenched dynamics. The effects of the 13C
transverse relaxation (T C

2 ) can be partially overcome by a
refocussing strategy in the reconstruction procedure.
We implement the backward process, shown in Fig. 1, by

driving the system with the time-reversed Hamiltonian
HB

t ¼ HF
τ−t from the equilibrium state ρeqτ ¼

expð−βHF
τ Þ=Zτ that corresponds to the final Hamiltonian

HF
τ (Zt here denotes the partition function at time t). The

intermediate 13C states during the field quench are ρFt ¼
U tρ

eq
0 U

†
t and ρBτ−t ¼ Vτ−tρ

eq
τ V†

τ−t, where the evolution
operators satisfy the time-dependent Schrödinger equations
dtU t ¼ −iHF

t U t and dtVt ¼ iHF
τ−tVt with the initial con-

ditions U0 ¼ V0 ¼ 1.
Work is performed on the system during the forward and

backward processes. The corresponding probability distri-
butions PF;BðWÞ are related via the Tasaki-Crooks fluc-
tuation relation [30–32]

PFðWÞ=PBð−WÞ ¼ eβðW−ΔFÞ: ð3Þ

Equation (3) characterizes the positive and negative fluc-
tuations of the quantum workW along single realizations. It
holds for any driving protocol, even beyond the linear
response regime, and is a generalization of the second law
to which it reduces on average, hΣi ¼ βðhWi − ΔFÞ ≥ 0.
We experimentally verify the arrow of time expressed by

Eq. (1) by determining both sides of the equation inde-
pendently. We first evaluate the Kullback-Leibler relative
entropy between forward and backward dynamics by
tracking the state of the spin 1=2 at any time t with the
help of quantum state tomography [23]. Figures 3(a)–3(c)
show reconstructed trajectories followed by the Bloch
vector, for both forward and backward processes and
different quench times. As a second step, we measure
the probability distribution PðΣÞ of the irreversible
entropy production using the Tasaki-Crooks relation (3).
Employing NMR spectroscopy [23] and the method
described in Refs. [26–28] (cf. Ref. [29] for a detailed
analysis), we determine the forward and backward work
distributions, from which we extract β, W, and ΔF, and
hence the entropy produced during each process. The
measured nonequilibrium entropy distribution is shown
in Fig. 4(a). It is discrete as expected for a quantum system.
We further observe that both positive and negative values
occur owing to the stochastic nature of the problem.
However, the mean entropy production is positive (red

line) in agreement with the Clausius inequality hΣi ≥ 0
for an isolated system. We have thus directly tested one
of the fundamental expressions of the second law of
thermodynamics at the level of an isolated quantum
system [3].
A comparison of the mean entropy production with the

Kullback-Leibler relative entropy between forward and
backward states is displayed in Fig. 4(b) as a function of
the quench time. We observe good agreement between the
two quantities within experimental errors that are due to
inhomogeneities in the driving rf field and nonidealities of
the field modulation. These results provide a first exper-
imental confirmation of Eq. (1) and the direct verification
of the thermodynamic arrow of time in a driven quantum
system. They quantify in a precise manner the intuitive
notion that the faster a system is driven away from thermal
equilibrium (i.e., the bigger the mean entropy production or
the shorter the driving time τ), the larger the degree of
irreversibility, as measured by the relative entropy between
a process and its time reversal.

FIG. 3 (color online). (a),(b) Evolution of the Bloch vector of
the forward [backward] spin-1=2 state ρFt [ρBτ−t] during a quench
of the transverse magnetic field, obtained via quantum state
tomography. A sampling of 21 intermediate steps has been used.
The initial magnetization (gray arrow) is parallel to the external rf
field, aligned along the positive x [y] axis for the forward
[backward] process. The final state is represented as a red [blue]
arrow. (c) Polar projection (indicating only the magnetization
direction) of the Bloch sphere with the trajectories of the spin.
Green lines represent the path followed in a quasistatic (τ → ∞)
process.
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In the linear response regime [3], Onsager derived
generic expressions for the entropy production that form
the backbone of standard nonequilibrium thermodynamics.
These results are, however, limited to systems that are
driven close to thermal equilibrium. By contrast, Eq. (1)
holds for any driving protocol and thus arbitrarily far from
equilibrium. In order to check the general validity of
Eq. (1), we use the linear response (LR) approximation
of the mean work [17] hWLRi ¼ ΔF þ βΔW2=2, where
ΔW2 is the variance of the work, to obtain the mean entropy
production hΣLRi ¼ β2ΔW2=2. Figure 4(c) shows the
experimental values of hΣi and hΣLRi as a function of
the quench duration. We note that the measured irrevers-
ible entropy production hΣi is close yet systematically
distinct from its linear response approximation hΣLRi,
the difference being more pronounced for fast quenches
(small τ), as expected. Figure 4(c) thus suggests that the
quenches implemented in the experiment are performed
somewhat away from the nonlinear response regime. We
also mention that we achieve good agreement between
experimental data (dots) and numerical simulations (dashed
lines) [29].
Conclusions.—We have assessed the emergence of the

arrow of time in a thermodynamically irreversible process
by using the tools provided by the framework of non-
equilibrium quantum thermodynamics. We have imple-
mented a fast quenched dynamics on an effective qubit in
a NMR setting, assessing both the mean entropy produced
across the process and the distance between the state of
the system and its reverse version, at all times of the
evolution. Let us discuss the physical origin of such time
asymmetry in a closed quantum system. Using an

argument put forward by Loschmidt in the classical
context, its time evolution should in principle be fully
reversible [1]. How then can a unitary equation, like the
Schrödinger equation, lead to Eq. (1) that contains a
strictly non-negative relative entropy? The answer to this
puzzling question lies in the observation that the descrip-
tion of physical processes requires both equations of
motion and initial conditions [1,13]. The choice of an
initial thermal equilibrium state singles out a particular
value of the entropy, breaks time-reversal invariance, and
thus leads to the arrow of time. The dynamics can only be
fully reversible for a genuine equilibrium process for
which the entropy production vanishes at all times.
Moreover, issues linked to the “complexity” of the
preparation of the initial state to be used in the forward
dynamics (or the corresponding one associated with the
time-reversed evolution) have to be considered [33]. By
providing an experimental assessment of the microscopic
foundation of irreversibility (systematically beyond the
linear response regime), our results both elucidate and
quantify the physical origin of the arrow of time in the
quantum setting of an isolated system.
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