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We present a continuum theory of self-propelled particles, without alignment interactions, in a
momentum-conserving solvent. To address phase separation, we introduce a dimensionless scalar
concentration field ϕ with advective-diffusive dynamics. Activity creates a contribution Σij ¼
−κ̂½ð∂iϕÞð∂jϕÞ − ð∇ϕÞ2δij=d� to the deviatoric stress, where κ̂ is odd under time reversal and d is the
number of spatial dimensions; this causes an effective interfacial tension contribution that is negative for
contractile swimmers. We predict that domain growth then ceases at a length scale where diffusive
coarsening is balanced by active stretching of interfaces, and confirm this numerically. Thus, there is a
subtle interplay of activity and hydrodynamics, even without alignment interactions.
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“Active matter” means the collective dynamics of self-
propelled particles. By converting energy into motion, such
particles violate time-reversal symmetry (TRS) at the
microscale, allowing far-from-equilibrium physics such
as spontaneous flow at scales much larger than the particle
size or spacing [1]. Active matter can be “wet,” i.e., coupled
in bulk to a momentum-conserving solvent, or “dry,” i.e., in
contact with a momentum-absorbing medium [2]. Wet
active systems include bacterial swarms in a fluid, the
cytoskeleton, biomimetic cell extracts [1,3–5], and syn-
thetic colloidal swimmers in a fully bulk geometry [6].
The latter may, in the future, offer a toolbox for directed
assembly of new materials.
Of particular importance is “active liquid crystal” (ALC)

theory [1,7], which starts from a passive fluid of rodlike
objects [8] with either a polar order parameter P [9], or a
nematic one Q [10]. An active stress −ζP ⊗ P or −ζQ is
then added, with ζ odd under time reversal and the dyadic
product⊗, representing the leading-order TRS violation in
an orientationally ordered medium. This causes new
physics such as giant number fluctuations [11] and sponta-
neous flow [9,10]. The latter instability depends on whether
particles are extensile (pulling fluid inward equatorially and
emitting it axially) or contractile (vice versa). Numerical
solutions [12–14] resemble experiments on bacterial
swarms [3] and microtubule-based cell extracts [5].
There is one important effect of activity that ALC models

donot capture (unless addedmanually [15]):motility-induced
phase separation (MIPS) [16,17]. If their propulsion speed
wðρÞ falls fast enough with the local density ρ (e.g., due to
collisions), even purely repulsive active particles phase-
separate into dense and dilute domains. MIPS is, by now,
well-established, at least for dry models such as Brownian
dynamics simulations of active spheres [18–21], and is an
important benchmarkproblem for continuum theories.Unlike

the physics of ALCs, MIPS does not depend on alignment
interactions [18] and can be captured at continuum level by a
dimensionless scalar concentration field ϕ alone, without
direct appeal to P orQ [20,22]. This is pertinent to spherical
colloidal swimmers, like many artificial microswimmers [6],
which (although not entirely devoid of alignment interactions
[23,24]) are, in contrast to ALCs, not orientationally ordered
in the passive limit. The theory of “scalar active matter,”with
MIPS as its main feature, has been developed, so far, only for
dry systems [16,17,25,26]. Following the same path as for
passive systems [27,28] culminates in a dynamical scalar ϕ4

field theory, called “Active Model B” [22].
In this Letter, we extend this simplest scalar active model

to the wet case, complementing previous work on hydro-
dynamic interactions among individual spherical swimmers
[23,24], and address phase separation as a benchmark
problem. For passive systems, it is well known how to
couple a diffusive, conserved, phase-separating order-
parameter field ϕðr; tÞ (see passive Model B [27]) to an
isothermal fluid flow; the result is called “Model H” [27].
We follow a similar path but find that activity deeply alters
the relation between the stress and the scalar order
parameter. At first sight, our “Active Model H” resembles
closely passive Model H, in which the domain size LðtÞ ∝
σt=η scales linearly in time, as found from a force balance
between interfacial tension σ and dynamic viscosity η. On
closer inspection though, our model involves two separate
tensions, one in the diffusive and one in the mechanical
sector. The second can be (and for pure MIPS is) negative
for contractile particles. Therefore, while extensile systems
show relatively normal domain growth, contractile ones
should cease to coarsen at a certain scale, set by a balance
between loss of interfacial area through diffusive coarsen-
ing and its creation through the contractile stress. The latter
effect arises because microswimmers are more likely to
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point normal to an interface than tangential to it (see Fig. 1).
This orientational bias has a purely kinematic explanation:
it does not require interparticle torques.
Active Model B.—For dry scalar active matter, the

diffusive dynamics of ϕðr; tÞ obeys [22,29]
_ϕ ¼ −∇ · J; ð1Þ

J ¼ −∇μþ Λ; ð2Þ
μ ¼ aϕþ bϕ3 − κ∇2ϕþ λð∇ϕÞ2: ð3Þ

Here, J is the diffusive current with unit mobility, Λ is a
standard Gaussian white noise, and a, b, κ, and λ are
constants (a < 0 to ensure phase separation, b>0 and κ>0
for stability). This Active Model B differs from the tradi-
tional passive Model B [27] solely by addition of the
leading-order TRS violation λð∇ϕÞ2. Without this term, μ,
which resembles a chemical potential, can be written as
δF=δϕ with the functional (setting kBT ¼ 1)

F ¼
Z �

a
2
ϕ2 þ b

4
ϕ4 þ κ

2
ð∇ϕÞ2

�
ddr: ð4Þ

For active systems in d spatial dimensions, F is not a
genuine free-energy functional, and in the simplest MIPS
theory, it stems solely from the density-dependent speed
wðρÞ [16]. Nonetheless, for λ ¼ 0 Eqs. (1)–(3) coincide
with Model B, which describes a passive system with free
energyF [27]. In contrast, for λ ≠ 0, no functionalF exists
for which μ ¼ δF=δϕ [22]. Thus, only the λ term allows a
steady-state flux to arise, thereby violating TRS in the
macroscopic equations, even if the physical origins of a, b,
and κ also do so microscopically.
Active Model H.—Now, we couple the diffusive dynam-

ics of ϕðr; tÞ to a momentum-conserving solvent with fluid
velocity vðr; tÞ. Diffusive dynamics now takes place in the
frame of the moving fluid so that Eq. (1) acquires an
advective time derivative,

_ϕþ v ·∇ϕ ¼ −∇ · J; ð5Þ
with no change to Eqs. (2) and (3). The fluid is incom-
pressible,

∇ · v ¼ 0; ð6Þ

and of unit mass density. The Navier-Stokes equation for
momentum conservation then reads

_v þ v ·∇v ¼ η∇2v −∇pþ∇ · Σ; ð7Þ
where the pressure field pðr; tÞ subsumes all isotropic
stress contributions and enforces Eq. (6); the deviatoric
stress Σ is traceless and (without orienting interactions)
symmetric. In passive systems, Σ can be derived from F by
standard procedures [31]; restoring isotropic terms, one
finds ∇ · Σ ¼ −ϕ∇μ, which is the thermodynamic force
density arising from concentration gradients [28]. The
deviatoric stress is then

Σij ¼ −κ̂
�
ð∂iϕÞð∂jϕÞ −

1

d
ð∇ϕÞ2δij

�
; ð8Þ

with κ̂ ¼ κ. But, if we allow for general κ̂, Eq. (8) remains
the only deviatoric stress that can be created from ϕðr; tÞ to
order Oðϕ2;∇3Þ [32], and is, hence, the sole leading-order
deviatoric stress contribution for scalar active matter [33].
This neither contradicts, nor depends on, recent analyses of
the pressure and/or stress in specific active models [35–39].
Our Active Model H comprises Eqs. (2), (3), and (5)–(8).
Regardless of the underlying cause of phase separation
(conventional attractions and/or MIPS in any combination),
only the activity-dependent parameters λ and κ̂ distinguish
Active Model H from a passive Model H with the free-
energy functional (4).
Our previous work on Active Model B shows λ to have

benign effects on dynamics: its main effect is to shift the
coexistence condition between phases [20–22]. Standard
diffusive dynamics (e.g., Ostwald ripening [28]) holds
qualitatively; although simulations show deviations from
the expected power law L ∝ t1=3, these likely represent a
slow crossover to that asymptote [22]. Below we focus
mainly on the role of κ̂.
This can be addressed in two contrasting limits. Suppose

first we have a system with strong interparticle attractions,
which would phase separate without activity. Then the
thermodynamic, zeroth-order result is κ̂ ¼ κ as mentioned
previously. Perturbative activity will change this only
slightly. TRS is broken, but as with λ the effect on phase
ordering dynamics should be benign. Specifically, we can
use standard power-counting arguments [28,40] to estimate
the dynamics of the domain size LðtÞ. Setting λ ¼ 0 for
simplicity and ignoring inertia (which leads to a third
regime at very late times [40,41]), we find [30]

_L≃ ασ=L2 þ β ~σ=η; ð9Þ

with dimensionless constants α and β. σ ¼ ð−8κa3=9b2Þ1=2
is the interfacial tension in ϕ4 theory. When activity is
nonzero but small, κ̂ ≠ κ and the tension ~σ differs slightly
from σ. The first contribution to _L is diffusive (so _L is a flux
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FIG. 1 (color online). Schematic showing the flow caused by
swimmers (full spheres) whose polarization is normal to an
interface between dense (dark background) and dilute (light
background) phases. For contractile swimmers this is mechan-
ically equivalent to a negative interfacial tension.
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∝ ∇μ ∼ Π=L ∼ σ=L2 with the Laplace pressure Π, where σ
is unperturbed since λ ¼ 0); κ̂ does not enter here. The
second is hydrodynamic (balancing a viscous stress η∇2v ∼
η _L=L2 against ∇ · Σ ∼ ~σ=L2). When ~σ ¼ σ, Eq. (9) cap-
tures the well-studied crossover from Model B behavior
L ∝ ðσtÞ1=3 to viscous hydrodynamic (VH) coarsening L ∝
~σt=η at a length scale L× ∝ η1=2. Despite loss of TRS, a
perturbative shift in ~σ is unlikely to change this outcome,
since Eq. (9) rests only on dimensional analysis [28].
The opposite limit is that of pure MIPS, where there are

no attractions between particles and every coefficient in
Active Model H is set by far-from-equilibrium physics
[primarily, by wðρÞ [16,20]]. In a TRS system, the form of
F stems from a Hamiltonian that determines the diffusive
(from ∇μ) and mechanical (from Σ) currents in a thermo-
dynamically consistent way. However, as already men-
tioned, in MIPS, F is merely a mathematical construct;
there is no Hamiltonian (even for λ ¼ 0) and, hence, no link
between κ and κ̂. Indeed, whereas κ is always positive, κ̂
can have either sign as we now show.
The argument is based on simple kinematics. For a

system of swimmers with a propulsion speed wðρÞ that
depends on local particle density ρðr; tÞ but not on
swimming direction û, the first and second orientational
moments of the distribution function Ψðr; û; tÞ obey [17]

P ¼ −τ∇ðwρÞ; ð10Þ
Q ¼ −τ

d − 1

2d
∇ðwPÞST: ð11Þ

Here, τ is the orientational relaxation time; ρ is the zeroth
orientational moment of Ψ; and ST denotes the symmetric
traceless component. Note that ρ and ϕ are related linearly;
specifically, if one sets a ¼ −b ¼ −1, one has
ϕ ¼ ð2ρ − ρH − ρLÞ=ðρH − ρLÞ, where ρL and ρH denote
the low and high densities of coexisting phases, respec-
tively [22]. Equation (10) is purely kinematic in origin:
wherever wρ has a gradient, there are more particles
pointing (i.e., moving) down this gradient than up it,
causing nonzero P [26].
For active particles, the leading-order mechanical stress

is, as for ALCs, caused by their exerting force dipoles
on the solvent [1]. In general, we can write Σ ¼
−ζPP ⊗ P=ρ − ζQQ with activity parameters ζP and ζQ.
However, from Eq. (11), it follows that, if w is a function of
ρ only (as assumed to this order in MIPS theories [20]),
∇ ·Q is a pure pressure gradient and, thus, ignorable.
Expanding Eq. (10) as P ¼ −τðwρÞ0∇ρ with prime denot-
ing a ρ derivative, we recover Eq. (8), where

κ̂ðϕÞ ¼ ζP
ρ

�
τðwρÞ0
ϕ0

�
2

: ð12Þ

The sign of κ̂ then depends only on whether swimmers are
extensile (ζP > 0)orcontractile (ζP < 0) [42].Time-reversal
interchanges these twocases, so theactivecontribution to κ̂ in
Eq. (8) is odd under it, unlike any passive part [45].

In keeping with our earlier discussion of Eq. (8), we now
suppress the ϕ dependence of κ̂. However, one could,
alternatively, retain κ̂ðϕÞ in Eq. (12) as part of a “best-fit”
procedure to a more detailed kinetic theory of MIPS [30];
we have checked numerically that the results are broadly
similar to those with constant κ̂ reported in what follows.
Next, we assume that local diffusive relaxation normal to

interfaces ensures that their local structure is only weakly
perturbed by fluid motion, just as applies in passive Model
H [28]. We, thereby, nonperturbatively recover Eq. (9), now
with ~σ ¼ σκ̂=κ [30]. So long as swimmers are extensile, the
two interfacial tensions in Eq. (9) are positive, and the
diffusive [L ∝ ðσtÞ1=3] and VH (L ∝ ~σt=η) regimes both
remain intact. The prefactor of the VH coarsening is,
however, shifted (possibly strongly), as is the crossover
length L× ∝ ðησ= ~σÞ1=2.
In contrast, very different physics now arises for contrac-

tile swimmers. Here, the interfacial tension σ in the diffusive
sector is positive as usual, but the mechanical one ~σ is
negative. Equation (9) still makes sense, but, instead of a
crossover fromdiffusive toVHcoarsening, there is a balance
point LB ∝ ðησ=j ~σjÞ1=2 where diffusive coarsening is
negated byVHanticoarsening. Thus,we predict that domain
growth will cease at this scale, to be replaced by a dynamic
equilibrium where the diffusive shrinkage of interfacial area
is balanced by its production under the action of the
contractile stress. This stretching of interfaces can be under-
stood as a combination of the kinematics—causing
swimmers at an interface to be aligned normal to it on
average—with the flow pattern around a contractile
swimmer, which pulls fluid inwards axially and expels it
around the equator. For a swimmer normal to the interface
(with either polarity) the latter is equivalent to a negative
interfacial tension(seeFig.1).Thisargumentalsoshowswhy
any ϕ dependence of κ̂ (unless it changes sign) should not
alter things qualitatively. Negative active tension has also
beensuggested in [39]byanargument that appearsunrelated,
since it applies equally to contractile and extensile cases.
To test these ideas, we have solved Active Model H

numerically on a lattice of size 256 × 256 by a noise-free
(i.e., Λ ¼ 0) hybrid Lattice Boltzmann scheme [47]. The
system was initialized in a mixed state with uniformly
distributed noise with −0.1 < ϕðr; 0Þ < 0.1. We set
a ¼ −b ¼ −0.004, κ ¼ 0.006, λ ¼ 0, and η ¼ 1.67, varied
κ̂, and checked that setting λ ≠ 0 does not qualitatively
affect our conclusions.
These simulations confirm our expectation that contrac-

tile (but not extensile) activity should lead to the arrest of
MIPS (see [30] for movies). This can be seen in Fig. 2 [see
[30,40] for the definition of LðtÞ]. Snapshots of the
dynamics in an arrested state are shown in Fig. 3; although
the length scale is now fixed, the structure is highly
dynamic [48]. As κ̂ increases towards zero, the saturation
length LB grows, and for −10−4 < κ̂ < 0, coarsening
does not arrest within the time window of our simulations.
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We speculate that it would do so eventually (at a length
scale diverging as κ̂ → 0−), although our data do not rule
out a finite negative threshold above which arrest never
occurs. The saturation length was argued above to obey
LB ∝ ðησ=j ~σjÞ1=2. At fixed η and κ this gives LB ∝ jκ̂j−1=2.
Our data for LBðκ̂Þ, instead, approach a weaker power law
at low activity and a plateau at larger values (see Fig. 1 in
[30]). The cause of this discrepancy is unclear but might
suggest that a force balance different from Eq. (9) prevails
in the highly dynamic states observed in strongly con-
tractile systems.
The case κ̂ ¼ 0 equates to passive Model B (no coupling

to fluid motion), whereas passive Model H is attained for
κ̂ ¼ κ. The LðtÞ curve is as expected in each case with final
power laws close to t1=3 and t, respectively. For passive
Model H, the crossover in LðtÞ from early-time diffusion to

late-time fluid flow is sigmoidal, and the negatively curved
part has often been interpreted as a sublinear power law
[40]. Whatever the precise interpretation is, extensile
systems with 0 < κ̂ < κ interpolate smoothly between
the two pseudopassive limiting cases. Sigmoidal curves
continue to be seen for systems with κ̂ > κ, in which the
tension in the fluid sector is higher than the one driving
diffusion. The data do not exclude an eventual power that
exceeds unity but more likely reflect a prolonged sigmoidal
crossover between diffusion and a linear growth with a
large slope _L ∝ ~σ=η.
In summary, we have constructed Active Model H, a

minimal model for scalar active matter coupled to a momen-
tum-conserving solvent, by combining the traditional deri-
vation of passive Model H, which has been fully tested
experimentally, with a leading-order expression for the
deviatoric stress.TRS isbrokenby twoeffects.One, encoded
by λ, causes shifts in the densities atwhich phases can coexist
in diffusive equilibrium [22]. The second effect is new, and
amounts to amismatch between the interfacial tension ~σ that
drives fluid motion and the tension σ that drives diffusive
fluxes. For extensile particles (or weakly contractile ones if
phase separation is driven by attractive interactions and not
purely motility induced), both tensions are positive, and
while their inequality violates TRS, its effect on coarsening
dynamics is expected to be not qualitative. The opposite is
true for contractile particleswhich become aligned normal to
the interface between phases, creating a flow pattern that
stretches it ( ~σ < 0). Balanced by diffusion, this effect can
cause the domain sizeLðtÞ to saturate—consistent with data
reported in [24]. This finding should also apply to active
particles that are not entirely devoid of alignment inter-
actions, as long as the system is in a parameter regime that
avoids the formation of long-range orientational order.
Finally, it is tempting to associate our prediction of arrest

at a finite length scale LB in wet contractile scalar active
fluids with observations of finite cluster formation, rather
than full phase separation, in synthetic microswimmers
undergoing MIPS [6]. However, there are two objections to
this. First, we do not know which, if any, of these systems
are contractile. Second, most observations of cluster phases
are in “nearly dry” systems: clusters are found within two-
dimensional layers close to a momentum-absorbing boun-
dary [6]. Nonetheless, our prediction is that arrested
separation should be generic in contractile wet systems
undergoing MIPS. We look forward to future experimental
tests of this prediction.
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FIG. 2 (color online). Results for the domain size LðtÞ in
extensile (κ̂ > 0) and contractile (κ̂ < 0) two-dimensional scalar
active fluids.

FIG. 3 (color online). Time series showing growth and arrest of
domain structure in a two-dimensional contractile scalar active
fluid with κ̂ ¼ −0.001 and box size 256 × 256.
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