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When liquid crystal elastomers are prepared without any alignment, disordered polydomain structures
emerge as the materials are cooled into the nematic phase. These polydomain structures are often attributed
to quenched disorder in the cross-linked polymer network. As an alternative explanation, we develop a
theory for the dynamics of the isotropic-nematic transition in liquid crystal elastomers, and show that the
dynamics can induce a polydomain structure with a characteristic length scale, through a mechanism
analogous to the Cahn-Hilliard equation for phase separation.
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Liquid crystal elastomers are remarkable materials that
combine the elastic properties of cross-linked polymer
networks with the anisotropy of liquid crystals [1]. Any
distortion of the polymer network affects the orientational
order of the liquid crystal, and any change in the magnitude
or direction of liquid crystal order influences the shape of
the polymer network. Hence, these elastomers are useful
for applications as actuators or shape-changing materials.
For many applications, it is necessary to prepare mono-

domain liquid crystal elastomers. In practice, this can be
done by applying a mechanical load or other aligning field
while cross-linking [2]. Surprisingly, elastomers prepared
without an aligning field do not form monodomains. Rather,
they form polydomain structures with nematic order in local
regions, which are macroscopically disordered. These poly-
domain structures have been seen in many experiments,
using a wide range of techniques [3–7]. Indeed, a recent
polarized light scattering study shows that liquid crystal
elastomers evolve toward a state of increasing disorder as the
isotropic-nematic transition proceeds, unless the disorder is
suppressed by a gradually increasing load [8].
One important issue in the theory of liquid crystal

elastomers is how to understand the polydomain state.
Several theoretical studies have attributed this state to
quenched disorder in the polymer network, which can be
understood by analogy with spin glass theory [9–17].
Effects of quenched disorder have further been modeled
and visualized through numerical simulations [18–21].
More macroscopic theories have shown that the resulting
polydomain structure has profound consequences for the
material’s effective elasticity [22,23].
The purpose of this Letter is to suggest a different

mechanism for the origin of the polydomain state, not
related to quenched disorder. We develop a theory for the
dynamics of the isotropic-nematic transition in liquid
crystal elastomers, in which growing nematic order is
coupled to elastic strain. This theory is related to previous
work on the dynamics of the nematic phase in these
materials [1,24]. We explore the theory in two dimensions

(2D), using two models for dynamic evolution of nematic
order and strain. The theory shows that dynamics can itself
select a characteristic length scale for a disordered poly-
domain structure, through a mechanism similar to the
Cahn-Hilliard equation for phase separation. In particular,
the theory predicts formation of structures with the form
shown in Fig. 1. We suggest that this mechanism may play
a role in the formation of polydomain liquid crystal
elastomers, in addition to quenched disorder.
In the theory of 2D liquid crystal elastomers, nematic

order is described by the tensor order parameterQαβðrÞ, and
elastic distortion of the material by the displacement vector
uðrÞ. In terms of displacement, the strain tensor is
ϵαβ ¼ 1

2
½∂αuβ þ ∂βuα þ ð∂αuγÞð∂βuγÞ�; we will consider

only the linear terms for small u. The free energy can
be expressed in terms of Qαβ and ϵαβ as

F ¼
Z

d2r

�
1

2
aQαβQαβ þ

1

4
bðQαβQαβÞ2

þ 1

2
Lð∂γQαβÞð∂γQαβÞ þ

1

2
λϵααϵββ

þ μϵαβϵαβ − VϵαβQαβ

�
: ð1Þ

Here, the first two terms are the Landau–de Gennes
expansion for the free energy in powers of the order tensor.
The coefficient a ¼ a0ðT − T0Þ is assumed to vary linearly
with temperature, while b is a positive constant. The third
term is the Frank free energy for spatial variations in the
order tensor, assuming a single Frank coefficient L. The
fourth and fifth terms are the elastic free energy in terms of
the strain tensor, with Lamé coefficients λ and μ. The final
term is the coupling between nematic order and strain, with
coefficient V.
If there were no coupling between nematic order and

strain, V ¼ 0, the system would have an isotropic-nematic
transition at a ¼ 0, corresponding to temperature T0. With
coupling V ≠ 0, the transition is shifted upward to
a ¼ V2=ð2μÞ, corresponding to the higher temperature
TIN ¼ T0 þ V2=ð2μa0Þ. Above that temperature, the state
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of minimum free energy is uniformly isotropic, with
Qαβ ¼ 0 and ϵαβ ¼ 0. Below that temperature, at a ¼ V2=
ð2μÞ − δa, the state of minimum free energy becomes
uniformly nematic, with alignment along a randomly
selected director n̂. In this state, the order tensor is
Qαβ ¼ Sð2nαnβ − δαβÞ, where the magnitude of nematic

order is S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δa=ð2bÞp

. This state extends uniformly along
the director, with strain ϵαβ ¼ ½V=ð2μÞ�Qαβ.
Now, suppose we begin in the isotropic phase, and

rapidly cool to a temperature slightly below TIN. At this low
temperature, nematic order and strain both begin to grow
dynamically. We ask the following question: Does the
dynamic process lead to the state of minimum free energy,
with uniform Qαβ and ϵαβ? Alternatively, does it lead to a
different, nonuniform state?

To answer this question, we develop a model for the
dynamics of the phase transition. We actually consider two
models, first simple linear drag and then more realistic
viscous flow. In both models, we describe four coupled
degrees of freedom: Qxxðr; tÞ, Qxyðr; tÞ, uxðr; tÞ, and
uyðr; tÞ. The remaining components of Qαβðr; tÞ are fixed
because it is a symmetric, traceless tensor, and ϵαβðr; tÞ can
be derived from uðr; tÞ. We cannot take the strain tensor
components as our fundamental degrees of freedom
because they are constrained by elastic compatibility; they
must all be derivable from the same uðr; tÞ.
In the simplest model of overdamped dynamics with

linear drag, the rate of change for each degree of freedom is
linearly proportional to the force acting on it. Hence, the
equations of motion are

∂Qxx

∂t ¼ −ΓQ
δF
δQxx

;
∂Qxy

∂t ¼ −ΓQ
δF
δQxy

;

∂ux
∂t ¼ −Γu

δF
δux

;
∂uy
∂t ¼ −Γu

δF
δuy

; ð2Þ

where ΓQ and Γu are mobility coefficients. To calculate the
forces on the right side of those equations, we substitute the
definition of the strain tensor into the free energy (1),
and take functional derivatives with respect to Qαβ and uα.
We then linearize the equations, assuming that Qαβ and uα
are both small in early stages of nematic ordering. The
equations then become

∂Qxx

∂t ¼ ΓQ½−2aQxx þ 2L∇2Qxx þ Vð∂xux − ∂yuyÞ�;
∂Qxy

∂t ¼ ΓQ½−2aQxy þ 2L∇2Qxy þ Vð∂xuy þ ∂yuxÞ�;
∂ux
∂t ¼ Γu½ðλþ μÞ∂x∇ · uþ μ∇2ux − Vð∇ · QÞx�;
∂uy
∂t ¼ Γu½ðλþ μÞ∂y∇ · uþ μ∇2uy − Vð∇ · QÞy�: ð3Þ

To simplify this system of equations, we Fourier trans-
form from position r to wave vector k, then write the
equations in the matrix form

∂
∂t

0
BBB@

Qxxðk; tÞ
Qxyðk; tÞ
uxðk; tÞ
uyðk; tÞ

1
CCCA ¼ −MðkÞ

0
BBB@

Qxxðk; tÞ
Qxyðk; tÞ
uxðk; tÞ
uyðk; tÞ

1
CCCA; ð4Þ

where MðkÞ is a 4 × 4 matrix. This matrix equation
resembles the Cahn-Hilliard equation for phase separation
of a binary fluid. At each k, the matrix MðkÞ has four
eigenmodes i, which either grow or decay exponentially
as e−ΛiðkÞt, where ΛiðkÞ is the corresponding eigenvalue
of MðkÞ. Note that ΛiðkÞ < 0 corresponds to exponential

(a)

(b)

(c)

FIG. 1. Visualization of liquid crystal elastomer structures
calculated here. The orientation and eccentricity of ellipses
represents local nematic order (on a coarse-grained length scale
much larger than individual mesogens). (a) Single wave in
nematic order and displacement. (b) Superposition of two
perpendicular waves, forming a square lattice. (c) Superposition
of three waves with random directions, amplitudes, and phases.
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growth, while ΛiðkÞ > 0 corresponds to exponential decay.
We must determine what grows most rapidly: which
eigenmode at which wave vector.

To identify the fastest-growing mode, we choose coor-
dinates such that k is along the x axis. The matrix then
simplifies to

MðkÞ ¼

0
BBB@

2ΓQðaþ Lk2Þ 0 −iΓQVk 0

0 2ΓQðaþ Lk2Þ 0 −iΓQVk

iΓuVk 0 Γuðλþ 2μÞk2 0

0 iΓuVk 0 Γuμk2

1
CCCA: ð5Þ

We now take the limit of an incompressible material, with
λ → ∞. In this limit, ux has a high energy cost, so that it
decays rapidly, and hence we eliminate it from consider-
ation. In that case, Qxx is not coupled to any other degrees
of freedom, so it is an eigenmode by itself, with eigenvalue
2ΓQðaþ Lk2Þ. If the system is at a temperature slightly
below the isotropic-nematic transition, we must have
0 < a < V2=ð2μÞ. In that temperature range, this eigen-
value is positive, so that Qxx decays exponentially. Hence,
we also eliminate it from consideration in the search for the
fastest-growing mode.
The remaining two modes are linear combinations ofQxy

and uy, with eigenvalues

Λ�ðkÞ ¼ ΓQðaþ Lk2Þ þ 1

2
Γuμk2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
ΓQðaþ Lk2Þ − 1

2
Γuμk2

i2 þ ΓQΓuV2k2
r

:

ð6Þ
Figure 2 shows a sample plot of these two eigenvalues as
functions of k. The eigenvalue ΛþðkÞ begins at 2ΓQa when
k ¼ 0, then increases with increasing k. For temperatures
just below the isotropic-nematic transition, with
0 < a < V2=ð2μÞ, it is always positive and hence repre-
sents a decaying mode. By contrast, Λ−ðkÞ begins at 0
when k ¼ 0, then decreases into negative values over the

range 0 < k <
ffiffiffiffiffiffiffiffiffiffiffi
δa=L

p
, where δa ¼ V2=ð2μÞ − a, and

eventually returns to positive values for larger k. Over
the range in which it is negative, it represents an exponen-
tially growing mode. To find the fastest-growing wave
vector, we minimize Λ−ðkÞ over k. For temperatures just
below the isotropic-nematic transition, for small δa, this
wave vector is kfastest ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δa=ð2LÞp

, and the corresponding
growth rate is jΛ−ðkfastestÞj ≈ Γuμ

2δa2=ð2LV2Þ.
We emphasize that this wave vector is selected through a

dynamic mechanism. It is not the minimum of the free
energy (which is a state of uniform nematic order and
strain). Moreover, it only occurs because of the coupling V
between nematic order and strain in a liquid crystal
elastomer. If these variables were uncoupled (V ¼ 0), the
matrix M would be diagonal, the isotropic-nematic tran-
sition would occur at a ¼ 0, and the fastest-growing mode
below that transition would be k ¼ 0.
To characterize the fastest-growing mode, we calculate the

eigenvector of M corresponding to eigenvalue Λ− at wave
vector kfastest. This eigenvector represents waves in both Qxy
and uy (with our assumption that the wave vector is in the x
direction), and these waves are 90° out of phase. Figure 1(a)
shows a sample visualization of the structure with a single
Fourier mode. It has alternating stripes with the director
oriented at �45° from the wave vector, accompanied by
displacement perpendicular to the wave vector.
In general, a liquid crystal elastomer will not have only

one Fourier mode. Rather, it can include modes with wave
vectors of magnitude kfastest in multiple directions. To find a
mode in an arbitrary direction, we rotate the wave vector,
and make a corresponding rotation of Qαβ and u. We then
add up the Fourier modes to find the structure. Figure 1(b)
shows an example with two perpendicular waves of equal
amplitude, leading to a square lattice in the nematic order
and the displacement. Figure 1(c) shows a more realistic
example with a superposition of three waves with random
directions, amplitudes, and phases.
The structures in Fig. 1 are similar to structures com-

monly observed in experiments and simulations on active
nematic liquid crystals [25]. This similarity is reasonable,
because both systems are controlled by couplings between
orientational order and extension of the material.
The growth of nematic order in a liquid crystal elastomer

can be described by the dynamic correlation function

FIG. 2. Sample plot of the eigenvalues Λ�ðkÞ in the linear drag
model of dynamics, with parameters a ¼ 0.1 and
L ¼ μ ¼ V ¼ ΓQ ¼ Γu ¼ 1. The largest negative eigenvalue
corresponds to the fastest-growing mode, which occurs at a
dynamically selected wave vector.
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Cðjr− r0j; tÞ¼ hcos2½θðrÞ−θðr0Þ�it
¼hQxxðr; tÞQxxðr0; tÞþQxyðr; tÞQxyðr0; tÞi
¼
X
k

eik·ðr−r0ÞhjQxxðk; tÞj2þjQxyðk; tÞj2i: ð7Þ

This sum is dominated by the fastest-growing mode at
wave vectors with magnitude kfastest, and hence

Cðjr − r0j; tÞ ∝
Z

2π

0

dϕ
2π

eikfastestjr−r0j cosϕe2jΛ−ðkfastestÞjt

∝ J0ðkfastestjr − r0jÞe2jΛ−ðkfastestÞjt: ð8Þ
Thus, in the early stages of growth, the correlation function
has the form of the Bessel function J0ðkfastestjr − r0jÞ, with
an exponentially increasing magnitude. In later stages of
growth, the approximation of small nematic order ceases to
apply, and other types of modeling are needed. Even so, the
length scale of 1=kfastest is established from the early stages.
The dynamic model presented above has a limitation: it

assumes that both Qαβðr; tÞ and uðr; tÞ have overdamped
dynamics, with drag forces linearly proportional to the rate
of change of these quantities. This assumption is appro-
priate for dynamics on a substrate, where the dissipation is
caused by drag against the substrate. However, if there is no
substrate, it is reasonable to generalize the dynamics in two
ways: by considering inertia for the displacement and by
considering viscous dissipation rather than drag against a
substrate.
For this generalization, we use the equations of motion

ρ
∂2uα
∂t2 ¼ −

δD
δ _uα

−
δF
δuα

; 0 ¼ −
δD

δ _Qαβ

−
δF
δQαβ

: ð9Þ

Here, ρ is the mass density, which gives inertia for u; there
is no inertia for Qαβ. Also, D is the Rayleigh dissipation
function, which can be written as

D ¼
Z

d2r

�
ηAαβAαβ þ

1

2
γ1BαβBαβ þ γ2AαβBαβ

�
ð10Þ

in terms of the two modes that dissipate energy: Aαβ ¼
1
2
ð∂α _uβ þ ∂β _uαÞ is the rate of shear flow and Bαβ ¼ _Qαβ −

ωzðϵδαQδβ þ ϵδβQδαÞ is the rotation rate of nematic order
relative to rotational flow of the material, given by
ωz ¼ 1

2
ϵμν∂μ _uν. In these expressions, η is the viscosity,

γ1 is the rotational viscosity, and γ2 is a dissipative coupling
coefficient.
We combine these expressions to derive the coupled

equations of motion for Qxx, Qxy, ux, and uy, and linearize
the equations assuming these variables are small in the
early stages of nematic ordering. We then follow the same
steps as in the previous calculation: Fourier transform from
r to k, choose coordinates such that k is along the x axis,
eliminate ux by the constraint of incompressibility, and
eliminate Qxx because it is an independent, exponentially
decaying mode. We are left with a matrix equation for
Qxyðk; tÞ and uyðk; tÞ:

�
0 0

0 ρ

��
Q̈xy

üy

�
¼ −

�
4γ1 iγ2k
−iγ2k ηk2

��
_Qxy

_uy

�

−
�
2ðaþ Lk2Þ −iVk

iVk μk2

��
Qxy

uy

�
:

ð11Þ

Next, we Fourier transform from time t to frequency ω, and
obtain

�
2ðaþ Lk2Þ− 4iγ1ω −iVkþ γ2ωk

iVk− γ2ωk μk2 − iηωk2 − ρω2

��
Qxy

uy

�
¼ 0:

ð12Þ

In this matrix equation, there are two couplings between
Qxy and uy: the elastic coupling V and the dissipative
coupling γ2. For simplicity, we set γ2 ¼ 0 and consider only
the elastic coupling.
The matrix equation only allows nontrivial Qxy and uy if

the determinant of the matrix is zero. Hence, we set the
determinant to zero and solve for the allowed frequencies
ω. Because the determinant is a cubic function of ω, there
are three solutions. Expanding to first order in 1=ρ, the
solutions are

ω0ðkÞ ¼ −
iðaþ Lk2Þ

2γ1
þ iγ1V2k2

ρðaþ Lk2Þ2 ;

ω�ðkÞ ¼ �k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ

ρ
−

V2

2ρðaþ Lk2Þ

s
−
ik2

2ρ

�
ηþ γ1V2

ðaþ Lk2Þ2
�
:

ð13Þ
Here, a real part of ω represents oscillation, a negative
imaginary part represents exponential decay, and a positive
imaginary part represents exponential growth.
The solution ω0ðkÞ is a purely damped mode. Whether

the system is in the isotropic phase, a > V2=ð2μÞ, or
slightly in the nematic phase, 0 < a < V2=ð2μÞ, this mode
decays exponentially.
The modes ω�ðkÞ depend on whether the system is in the

isotropic or nematic phase. In the isotropic phase,
a > V2=ð2μÞ, these modes are damped sound waves, with
both oscillation and exponential decay. By comparison,
when the system is cooled slightly into the nematic phase,
0 < a < V2=ð2μÞ, these modes change into pure exponen-
tial growth or decay. One of the modes has a negative
imaginary part for all k, corresponding to decay, but the
other mode has a positive imaginary part for a range of k,
corresponding to growth.
Figure 3 shows a sample plot of the mode structure in the

nematic phase. We can see that the ω0ðkÞ and ω−ðkÞmodes
are decaying for all k, but the ωþðkÞ mode is growing for a
range of k. In this respect, it resembles the growing mode in
the linear drag model of dynamics, shown in Fig. 2. In the
limit of high ρ, the range of exponential growth is
0 < k <

ffiffiffiffiffiffiffiffiffiffiffi
δa=L

p
, and the fastest-growing wave vector is
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kfastest ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δa=ð2LÞp

, where δa ¼ V2=ð2μÞ − a. These
results are equivalent to corresponding results for the linear
drag model.
Hence, the generalized model of dynamics (with inertia

and viscosity) leads to the same conclusion as the linear
drag model: the dynamic mechanism of the isotropic-
nematic transition selects a fastest-growing wave vector.
This fastest-growing wave vector is not the minimum of
the free energy, and it only occurs because of the coupling
between nematic order and strain. We expect modulations
with this wave vector to grow in liquid crystal elastomers
cooled below the isotropic-nematic transition, leading to
structures with the form shown in Fig. 1.
To be sure, both models of dynamics presented here

apply only to early stages of growth of nematic order. In
later stages, as nematic order becomes more established, we
cannot assume that Qαβðr; tÞ and uðr; tÞ are small. In that
case, our linearization of the equations of motion breaks
down, and the dynamics must be studied through other
techniques, such as numerical simulation. Hence, we
cannot be sure whether the polydomain structure will
persist into longer time, or will eventually coarsen into a
uniform structure. In the late stages of dynamics, preexist-
ing quenched disorder may lock in the polydomain struc-
ture at the length scale given by dynamics, and prevent it
from coarsening away. Alternatively, the dynamically
induced polydomain structure may be fixed by the cross-
linking process, so that it provides a source of quenched
disorder for future processes in the elastomer.
Our theory can be tested experimentally by investigating

how the polydomain structure depends on cooling rate. The
theory predicts that coarsening farther below the equilibrium
isotropic-nematic transition temperature gives a higher wave
vector kfastest. Hence, a higher cooling rate should lead to a
smaller polydomain length scale. The theory might also be
tested by imaging the polydomain structure; we expect a
structure characterized by bend stripes as in Fig. 1.

In conclusion, we have shown that dynamic evolution of
nematic order can induce a polydomain state with a
characteristic length scale, in the early stages of the
isotropic-nematic transition. This mechanism should be
considered, along with quenched disorder, in studies of
polydomain liquid crystal elastomers.
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