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We introduce the numerical linked cluster expansion as a controlled numerical tool for the study of the
many-body localization transition in a disordered system with continuous nonperturbative disorder.
Our approach works directly in the thermodynamic limit, in any spatial dimension, and does not rely on any
finite size scaling procedure. We study the onset of many-body delocalization through the breakdown of
area-law entanglement in a generic many-body eigenstate. By looking for initial signs of an instability of
the localized phase, we obtain a value for the critical disorder, which we believe should be a lower bound
for the true value, that is higher than current best estimates from finite size studies. This implies that most
current methods tend to overestimate the extent of the localized phase due to finite size effects making the
localized phase appear stable at small length scales. We also study the mobility edge in these systems as a
function of energy density, and we find that our conclusion is the same at all examined energies.
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Introduction.—The eigenstate thermalization hypothesis
(ETH) is a powerful statement relating observables of the
high energy eigenstates of a quantum many-body system
with their thermal expectation values [1,2]. However, this
principle can be violated in certain systems with strong
enough disorder, where even the high energy eigenstates
possess only local entanglement [3,4]. Anderson localiza-
tion is a one-body example of this. An area of key interest is
how far this localization persists in a many-body state in the
presence of interactions [5]. At what point are interactions
strong enough that the localization is destroyed and the
system obeys ETH? This is the problem of the many-body
localization (MBL) transition, which is a topic of active
research both theoretically and experimentally [6–31].
The surge of interest in many-body localized systems has

motivated many numerical studies. Most studies have
focused on exact diagonalization or Lanczos methods which
are able to address both sides of the transition in small
systems [32–45]. However, since much about this phase
transition is still not well understood, extension of finite size
results to the thermodynamic limit can prove difficult. We
would like to examine this phase transition using expansion
methods, which provide an alternate way of addressing the
thermodynamic limit. While standard perturbative series
expansions are very powerful [46–48], they suffer from
small energy denominators in models with continuous
nonperturbative disorder. Thus, we turn to the numerical
linked cluster (NLC) expansion [49–51], which does not
suffer from this problem of small energy denominators.
In this Letter, we provide evidence that for a prototypical

model of MBL, approaching the critical disorder from the
localized side, the localized phase actually becomes unsta-
ble only at increasingly long length scales inaccessible to
most numerical techniques. This implies that finite size

numerical studies on the MBL transition tend to overesti-
mate the extent of the localized phase.
Model.—The system we study explicitly is the spin-1=2

Heisenberg Hamiltonian with random fields along the z
direction,

H ¼
X

i

hiS
z
i þ

X

hi;ji
~Si · ~Sj; ð1Þ

on the 1D chain, where the sum hi; ji is over adjacent pairs.
The random field is picked from a uniform distribution
hi ∈ ½−h; h�. This is one of the simplest models to study
many-body localization on, and it has been studied numeri-
cally in great detail [32–35,52,53]. At low h, the system is
in a thermalizing phase obeying the ETH while at high h,
the system is in the localized (MBL) phase.
To identify these different phases, we focus on the

entanglement properties of the eigenstates. The typical
measure for entanglement in a pure state bipartitioned into
two parts A and B is the von Neumann entropy, defined for
some state jΨi as

sðjΨiÞ ¼ −TrðρA ln ρAÞ; ð2Þ
where ρA ¼ TrBjΨihΨj is the reduced density matrix,
obtained by tracing over all external degrees of freedom
from the density matrix.
A typical eigenstate in an ETH obeying system will

exhibit thermal volume-law entanglement. The entangle-
ment entropy will approach the classical thermal entropy
(required by ETH) and scale with the volume of the regions
A and B. In the localized phase, the eigenstates will instead
obey an area law, scaling with the area between A and B.
This can be understood by regarding them as simultaneous
eigenstates of many local operators [3]: only due to mixing
contained in operators near the boundary will one get
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contributions to the entanglement, which therefore grows
with the area of the bipartitioning.
Numerical linked cluster expansions.—The NLC is

similar to perturbative series expansions in that interactions
within clusters of increasing size must be considered, but
rather than perturbatively treating each interaction within a
cluster, we solve them numerically, typically by exact
diagonalization. Our treatment of disorder in the NLC is
different from usual [51,54], allowing us to deal with
continuous nonperturbative disorder. The procedure is
outlined briefly here.
Let N be the order to which we wish to do the calculation.

The order of the calculation is defined as the number of spins
in the largest cluster considered. We identify a finite size
region of the infinite system to work with. For the chain, this
is simply a 2ðN − 1Þ length chain, with a bipartitioning cut
in the middle. Each of the sites i is assigned a field hi, which
is held fixed until the calculation is complete. This choice of
system size is used so that the results remain correct for the
infinite system, to the desired order, as explained later.
We define a cluster c to be a set of sites. A Hamiltonian

Hc can be obtained considering only the spins in c and can
be diagonalized numerically to obtain the eigenstates
fjαcig with eigenvalues fϵcαg labeled by α. Our quantity
of interest, the eigenstate averaged entanglement entropy,
can then be calculated as

SðcÞ ¼
X

α

e−βϵ
c
α

Z
sðjαciÞ; ð3Þ

where Z ¼ P
αe

−βϵcα is the normalization factor and β ¼
1=T is the inverse temperature.
The entropy for the infinite lattice L can be expressed as

a sum over the weight ~SðcÞ of all clusters c that can be
embedded in the lattice: SðLÞ ¼ P

c
~SðcÞ. The weight of a

cluster is then defined recursively by the principle of
inclusion and exclusion [49]:

~SðcÞ ¼ SðcÞ −
X

c0⊂c

~Sðc0Þ: ð4Þ

One can show that only connected clusters which cross the
boundarycanhave anonzeroweight. First, if a cluster does not
cross the boundary, there can obviously be no entanglement
in it or its subclusters, so the weight is trivially zero. Second,
proving that only connected clusters can contribute simply
amounts to proving that S obeys the linked cluster property,
that is, for a cluster with two disconnected components c1
andc2,Sðc1 ∪ c2Þ¼ Sðc1ÞþSðc2Þ.This followsfromthe fact
that Hc1∪c2 ¼Hc1 ⊕Hc2 . Thus, we must simply consider
connectedclustersofuptosizeN thathavesitesonbothsidesof
the partition. Our finite size representation was chosen to
contain all of the necessary clusters of the infinite system up
to order N. The count for the clusters crossing the boundary
scales with the area, thus guaranteeing an area law as long as
the NLC converges.
Using this, we can obtain a series an whose sum gives the

total eigenstate averaged entanglement entropy per unit area
Sarea,

Sarea ¼
1

Lcut

XN

n¼0

an; an ¼
X

c;jcj¼n

~SðcÞ; ð5Þ

where Lcut is simply 1 for the chain. Finally, the entire
calculation must be repeated for different realizations of fhig
to obtain a disorder averaged value for an [55].
The NLC scheme used here is slightly different from what

has typically been used for random systems in the past,
where different embeddings of the same graph are treated
identically and one does not need a consistent finite system
[54,56,57]. The more standard scheme has been applied to
study MBL systems with discrete disorder [51], which
allows one to perform disorder averaging before subgraph
subtraction. When there is continuous disorder, partial
disorder averaging over a finite number of realizations means
that the linked cluster property is only approximate, and thus
large errors will build up at high orders. In our approach, the
linked cluster property is guaranteed and one is free to
average over many realizations of the system. This is a key
aspect of our calculation which allows us to treat disordered
systems with continuous nonperturbative randomness.
Does it converge?—We first examine T ¼ ∞. If entan-

glement satisfies a thermal volume law, interpreting n as a
proxy length scale [50], we expect an to eventually saturate
to the volume-law constant lnð2Þ=2 for high enough n [58].
We should note that our model [Eq. (1)] does not possess a
strongly thermalizing regime, due to the integrability at
h ¼ 0, and therefore we do not yet see this saturation to the
thermal value within our range of n’s [59]. In the localized
phase, the additional entanglement due to the addition of
one site far away from the cut should become exponentially
small with distance, so we expect an to decay exponentially
to 0 once n is larger than some localization length ξ. We
define the MBL phase in our study to be one in which the
sum of an converges exponentially.
Figure 1 shows an for a range of h values. To estimate

convergence or divergence, a linear extrapolation to 1=n ¼ 0
can be performed. If the extrapolation predicts a∞ ≥ 0, we
argue that this corresponds to a breakdown of area law.
Although we expect an to eventually go to 0 exponentially in
the localized phase, this would only happen when our cluster
sizes are much greater than the localization length scale. This
can be more clearly shown by examining the ratio of terms,
which we will discuss next. Note that the case of an area law
with logarithmic corrections would correspond to one where
an heads linearly to 0, which we consider in this analysis to
be the boundary between convergence and divergence.
Let us define the ratio of the (disorder averaged) series

terms rn ¼ an=an−1. In the MBL phase, we can say more
about the overall trend of rn. Again interpreting n as a
proxy length scale, for large n, we expect an to decrease
exponentially with potentially power-law prefactors. The
leading contributions at n ≫ ξ should be of the form
an ¼ Cn−k expð−n=ξÞ, where k is some positive number,
ξ is the localization length, and C is some arbitrary constant
[3]. Therefore, in the large n limit, discarding terms smaller
than 1=n, we expect
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rn ¼ an=an−1 ¼ ð1 − k=nÞ expð−1=ξÞ: ð6Þ

Therefore, plotting rn versus 1=n, rn should approach r∞ ¼
expð−1=ξÞ frombelow,with a slopeof−k.However, near the
transition, ξ canbecomevery large andwedonot actually see
this behavior within our range of attainable n’s. We can,
however, predict whether this kind of exponential conver-
gence is possible given the behavior of the series at a finite n.
Figure 2 shows the behavior of rn for our range of h’s

and n’s. The trend seems to be for rn to increase steadily
with n (although eventually rn must approach 1 in the
delocalized phase). If the system is in the MBL phase and
the series is to converge exponentially, we expect that at
some n ≫ ξ, an will begin decreasing exponentially and rn
will begin heading towards r∞ with slope −k. Barring
bizarre behavior such as rn increasing to some high value
and then suddenly decreasing before finally increasing
again towards r∞, this places a restriction on what rn can be
when an begins its exponential decay. Because the slope of
the approach is negative or 0, rn ≤ r∞. But also, n ≫ ξ,
which means that this decay can only begin occurring when

rn ≤ r∞ ¼ expð−1=ξÞ < expð−1=nÞ: ð7Þ
Therefore, once rn has increased above expð−1=nÞ, an

cannot converge exponentially. This is not a rigorous claim,
but it should be valid as long as an behaves in a regular
manner. This clearly shows (in Fig. 2) that the series for
h ¼ 4.0 cannot converge exponentially and thus is not in
the MBL phase. However, the series for h > 4.5 are still
within this region and thus may diverge or converge.
Hence, our result should serve as a lower bound, with
our best estimate being at hc ¼ 4.5� 0.1. Going to higher
order in the NLC can further refine this value.
Discussion.—Away of viewing our result [60] is that we

are seeing an instability to thermalization of an almost-
localized regime [61]. That is (in Fig. 1), initially an acts
quite localized in that it is much smaller than the thermal
value and is getting smaller as n is increased, but it may

start increasing at higher n’s, signaling the onset of
thermalization. This onset of thermalization moves to a
higher n as h is increased, but it goes beyond our range of
accessible n after h ¼ 3.5. However, by looking in a
sensitive way for initial signs of an instability, we are able
to place a lower bound for hc at 4.5� 0.1.
To understand how our analysis is more sensitive to this

transition than other methods, let us focus on the entangle-
ment per unit volume Svol. Svol decreasing with system size
is often associated with area-law entanglement, and therefore
localization [33]. In our study, Svol for a system of size N
would correspond to the quantity Svol ¼ ð1=NÞPN

n¼0 an. So
even if an had already turned up and was increasing (clearly
thermalizing), Svol would not begin increasing until an had
increased above the mean of all of the previous terms in the
series. Our analysis predicts this upturn, which itself would
precede estimates from finite size systems using Svol.
Other methods, which are more focused on seeing the full

onset of thermalization, do not observe the transition near
our bound [32–35]. Results from Lanczos on systems of up
to 22 sites with finite size scaling show evidence for a
transition at hc ≈ 3.7 [33]. However, the scaling exponent
ξ ∼ ðh − hcÞ−ν obtained from finite size scaling strongly
violates the Harris-Chayes bound in one dimension [62,63],
evidence that perhaps they are still far from the true critical
point. This implies that finite size effects are significant, even
in the systems accessible to Lanczos, and some corrections
to the finite size scaling are needed. These effects cause an
overestimate of the stability of the MBL phase, which
actually becomes unstable to thermalization earlier only at
much longer length scales. Note that an interesting alternate
possibility is the existence of an intermediate phase between
the ETH and the MBL phase, with neither thermal nor area-
law entanglement [64–66], which we do not pursue further.
This onset of thermalization at high order is what one

would expect from a long length scale delocalization
mechanism. In studies of this transition using a renormal-
ization group approach, one also finds that the transition is
driven by rare metallic inclusions [67,68]. Near the tran-
sition, these are rare enough that small systems look localized
but actually become thermalizing at long length scales.

FIG. 1 (color online). The nth order area-law contribution an
[Eq. (5)] at T ¼ ∞. Near hc, data has been averaged over more
than 3 × 105 disorder realizations of the chain, and error bars
show the standard error of the mean. The dashed lines are a
demonstration of the linear extrapolation to a∞ by fitting the last
four terms in the series.

FIG. 2 (color online). Plot of the ratios rn ¼ an=an−1 versus
1=n. Also shown is the line expð−1=nÞ, above which we argue
that the expansion cannot converge exponentially.
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The mobility edge.—Finally, we can observe the transition
at different energy windows by varying β ¼ 1=T in Eq. (3)
of our NLC calculation, thus probing states at a given energy
defined by the thermal ensemble. Following the same
arguments as at T ¼ ∞, we can obtain estimates for hc at
a given temperature or energy density. Figure 3 shows our
estimates for various β values, with the scaled energy ϵ on
the vertical axis: ϵ ¼ ðE − EminÞ=ðEmax − EminÞ, whereEmin
and Emax are the lowest and highest energies in the energy
spectrum. The shape of our estimates are very similar to
those obtained in previous numerical calculations [32,33],
along with the slight asymmetry expected around ϵ ¼ 1=2
[69]. As with the case at T ¼ ∞, we find that our estimates
are consistently higher than previous numerical calculations.
There is much debate on whether a mobility edge exists

in the thermodynamic limit. Numerical results suggest the
presence of such an edge [32,33,69], but there are also
arguments against it [70]. While our phase diagram shows a
similar shape as previous numerical studies, our analysis
gives a lower bound for hc, and hence it does not negate the
claims of the absence of a mobility edge. If the transition
actually occurs at a single hc for all energies, the fact that
our estimates are lower away from the center of the
spectrum would indicate that much larger length scales
would be needed to observe delocalization and that finite
size effects would be much stronger in those regions.
Conclusions.—In conclusion, we have studied the MBL

transition in the random field Heisenberg model using NLC
expansions. We focus on the breakdown of the area law of
entanglement in the eigenstates of the Hamiltonian. Our
approach works directly in the thermodynamic limit and
does not rely on any finite size scaling. By looking for signs
of instability in the MBL phase, we are able to estimate a
lower bound for the critical disorder in the thermodynamic
limit. At all energies examined, our hc estimates are
consistently higher than those found in finite size studies.
This implies that numerical methods which look for the full
onset of thermalization tend to overestimate the extent of

the MBL phase, which actually becomes unstable earlier
but only at much longer length scales. Near the transition,
finite size effects are significant, and hence caution must be
taken when relating to the infinite system.
Our result can be readily verified by cold atom experi-

ments, which are able to present very well characterized
systems [28–31]. If the 1D random field Heisenberg model
is experimentally realized, measurements of the critical
disorder for large systems should lie above our estimate.
Wemay also extend our result to other similar models of the
disorder driven MBL transition, where delocalization also
occurs over a long length scale [67,68], and suggest that
the true critical point would be higher than finite size
scaling estimates from small systems. Also of interest are
quantum chaotic Wannier-Stark systems [71,72], which are
experimentally accessible and possess a localization-
delocalization transition in the absence of disorder.
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