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Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of
superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi
loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We
note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor
symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We
suggest the possible application of our theory to recently discovered superconducting states in Cd3As2.
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Dirac semimetals are three-dimensional (3D) materials
that possess gapless (Dirac) points in the bulk Brillouin
zone (BZ), whose low-energy excitations are effectively
described as Dirac fermions. With time-reversal symmetry
(TRS) and inversion symmetry (IS) preserved, a pair of
Dirac points is formed at the crossing of two doubly
degenerate bands on a high-symmetry axis. They are
protected by discrete rotation (Cn) symmetry [1–4], which
prohibits band mixing to open a gap. Furthermore, Dirac
semimetals may host a surface Fermi loop (FL) [3–6]. This
contrasts sharply with a surface Fermi arc in Weyl
semimetals [7], because its topological origin is different.
Several Dirac semimetals, including Na3Bi [8–11] and
Cd3As2 [5,6,12–17], have been demonstrated experimen-
tally and predicted theoretically [18–22].
Superconducting phase transitions were reported

recently in Cd3As2 [23–25] and Au2Pb [26], both of which
support Dirac points protected by C4 symmetry. Bulk
Cd3As2 exhibits superconductivity under high pressure
(∼8.5 GPa) [25] accompanied by a structural phase tran-
sition of the crystal [27]. In addition, point contact
measurements of Cd3As2 reportedly induce superconduc-
tivity around the point contact region, where the tunneling
conductance shows a zero-bias conductance peak [23,24].
Au2Pb also exhibits a superconducting phase transition
after a structural phase transition [26].
In this Letter, we address the effect of the nontrivial

topology, i.e., the Dirac points and FL, on the super-
conducting properties. Topological materials are a prom-
ising platform to realize topological superconductors
(TSCs) owing to the nontrivial topology of the wave
function in normal states [28–35]. For instance, surface
Dirac fermions may realize a TSC even for an s-wave
pairing state [28,29]. Also, the Fermi surface topology,
which is the simplest topological structure in the normal
state, directly affects the topological superconductivity of
odd-parity superconductors [30,31,35]. For the carrier-
doped topological insulator, topological superconductivity
has been anticipated for the surface [29] or the bulk [31].

Here we present a general framework for studying
superconductivity in Dirac semimetals. The key ingredients
are symmetry-protected topological numbers in crystalline
insulators and superconductors [36–47]. In particular, we
examine the C4 topological invariant and the mirror Chern
number, which ensure the existence of Dirac points and
FLs, respectively, in Dirac semimetals. First, we show that
these two topological numbers are intrinsically related to
each other, establishing a relation between Dirac points and
surface FLs. Then, we elucidate how the nontrivial top-
ology of Dirac semimetals affects their superconducting
state. We find that, for a class of pairing symmetries, Dirac
points and FLs in the normal state are inherited as bulk
point nodes and surface Majorana fermions (MFs), respec-
tively, in the superconducting state.
By carefully examining the low-energy effective

Hamiltonian, we also reveal that doped Dirac semimetals
favor an equal-spin odd-parity pairing rather than a conven-
tional s-wave one. The former pairing exhibits a distinct
quartet of surface MFs stemming from the FL, though point
nodes exist when the system retains C4 rotation symmetry.
If the C4 symmetry is reduced to C2 by a structural phase
transition, the nodes disappear, and a full-gapped sym-
metry-protected TSC is realized. The FL-induced MFs are
clearly distinguished from those in other TSCs [48,49]
including superfluid 3He-A [50,51] and Weyl supercon-
ductors [34,52–55]. We finally suggest the possible appli-
cation of our theory to recently discovered superconducting
states in Cd3As2 and Au2Pb.
Stability of Dirac points and surface Fermi loop.—First,

we provide a general argument on the topology of Dirac
points. Our theory assumes TRS, IS, and uniaxial rotation
symmetry, which are the most common symmetries for
Dirac semimetals. In the presence of TRS and IS, Kramer’s
degeneracy exists at arbitrary k in the BZ, ensuring fourfold
degeneracy when the conduction and valence bands are in
contact. Such an accidental band crossing is generally not
stable owing to band repulsion. However, if the band-
touching point is on the high-symmetry axis, a Cn
symmetry can retain the band crossing as a Dirac point
[1–4]. Below, we clarify the relevant topological structures.

PRL 115, 187001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 OCTOBER 2015

0031-9007=15=115(18)=187001(5) 187001-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/PhysRevLett.115.187001
http://dx.doi.org/10.1103/PhysRevLett.115.187001


We focus on theC4 symmetric HamiltonianC4HðkÞC−1
4 ¼

HðR4kÞ, with R4k ¼ ðky;−kx; kzÞ. Here, without losing
generality, we have chosen the rotation axis as the kz axis.
The commutation relations between the TRS operator T, IS
operator P, and C4 are summarized as ½T; P� ¼ ½T; C4� ¼
½P;C4� ¼ 0. As illustrated in Fig. 1(a), for a C4 symmetric
tetragonal crystal, there are two C4 symmetry lines: ΓZ ¼
ð0; 0; kzÞ and MA ¼ ðπ; π; kzÞ, with kz ∈ ½−π; π�. On these
C4 symmetry lines, theHamiltonian commuteswithC4; thus,
any energy band along the high-symmetry lines has a definite
eigenvalue of the C4 operator, αp ¼ exp ½ðiπ=2Þðpþ 1

2
Þ�

(p ¼ 0; 1; 2; 3).
The existence ofDirac points is ensured by the topological

invariant defined below. The system is generally gapped at
theC4 symmetry points k ¼ Γ; Z;M; A, so one can count the
number of bands below the Fermi level at these points.
Denoting the number of such bands with the C4 eigenvalue
αp at k as NpðkÞ, we can introduce the topological number
Qp ¼ NpðΓÞ − NpðZÞ for Dirac points on the ΓZ line,
which we call the C4 topological invariant. The Kramer’s
degeneracy due to PT symmetry requires Qp ¼ Q3−p
ðp ¼ 0; 1Þ. Moreover, the sum rule

P
3
p¼0Qp ¼ 0 holds

for Dirac semimetals. Indeed, for a Dirac semimetal to
become an insulator by a small C4-breaking perturbation,
the total number of bands below theFermi level should be the
same at all the symmetry points k, which leads to the sum
rule. From these two relations, we have

Q0 ¼ −Q1 ¼ −Q2 ¼ Q3 ≡Q: ð1Þ
IfQ ≠ 0, any band with αp has Q gapless points on the ΓZ
lines, corresponding to the difference NpðΓÞ − NpðZÞ,
which eventually form Q Dirac points. In Fig. 1(b), we
illustrate a Dirac point with Q ¼ −1. Because band mixing
between differentC4 eigensectors is prohibited, the resultant
Dirac points are stable as long asC4 symmetry ismaintained.

Similarly, we can also introduce the C4 invariant for Dirac
points on the MA line.
Because of IS and the C2 subgroup for C4 symmetry,

the system also has mirror-reflection symmetry:
MxyHðkx; ky; kzÞM−1

xy ¼ Hðkx; ky;−kzÞ, with Mxy ¼ C2
4P.

In the mirror-invariant planes (kz ¼ 0 or π), the
Hamiltonian is block diagonal in the basis of the eigenstates
of Mxy; thus, the mirror Chern number νλðkzÞ with kz ¼ 0,
π is defined as νλðkzÞ≔1=2π

R
BZ dkxdkyF

λðkÞ, with
Aλ

aðkÞ≔
P

En<0ihuλnðkÞj∂kau
λ
nðkÞi [56,57], where juλnðkÞi

is an eigenstate of HðkÞ in the mirror sector with the
eigenvalue λ ¼ �i of Mxy and F λ is the field strength of
Aλ

a. Generalizing the relation between a band inversion and
the Chern number in terms of eigenvalues of crystal
symmetry [43,58–61], we obtain the following relation
for the mirror Chern number:

eðiπ=2Þνλð0Þ ¼
Y
p

α
½Nðp;λÞðΓÞþNðp;λÞðMÞ�
p

Y
q

ξ
−N ðq;λÞðYÞ
q ; ð2Þ

where ξq ¼ exp ½iπðqþ 1
2
Þ� ðq ¼ 0; 1Þ is the eigenvalue of

C2, Nðp;λÞðkÞ is the number of occupied bands at k with a
set of theC4 andMxy eigenvalues ðαp; λÞ, andN ðq;λÞðYÞ are
those at Y with a set ofC2 andMxy eigenvalues ðξq; λÞ. [Y is
the C2 symmetry point in Fig. 1(a).] Note that occupied
bands at the C4 (C2) symmetry points have a definite set of
eigenvalues for C4 (C2) and Mxy because ½C4;Mxy� ¼
½C2;Mxy� ¼ 0. We can also obtain a similar relation for
νλðπÞ by replacing Γ, M, and Y with Z, A, and T,
respectively, in Fig. 1(a).
To see the close relationship between the C4 invariant

and the mirror Chern number, consider a process in which a
pair of stable Dirac points is created at Γ [4]. Band
inversion at Γ occurs in this process, so a Kramer’s pair
of occupied bands, which have a set of eigenvalues ðαp0 ; λÞ
and ðα3−p0 ;−λÞ≡ ðα�p0 ; λ�Þ, go above the Fermi level, and a
Kramer’s pair of empty bands with the eigenvalues
ðαp00 ; λÞ and ðα3−p00 ;−λÞ go below it at Γ. As a result,
Nðp;λÞðΓÞ changes by ΔNðp0;λÞðΓÞ¼ΔNð3−p0;−λÞðΓÞ¼−1,
ΔNðp00;λÞðΓÞ¼ΔNð3−p00;−λÞðΓÞ¼1. To have a stable Dirac
point, Qp should change at the same time, so p0 ≠ p00.
Then, from Eq. (2), we find that this process induces a
simultaneous change in the mirror Chern number Δνλð0Þ:

Δνλð0Þ ¼
X
p

�
pþ 1

2

�
ΔNðp;λÞðΓÞ mod 4;

¼ ðp00 − p0Þ ≠ 0 mod 4: ð3Þ
Therefore, the creation of stable Dirac points is always
accompanied by a net change in the mirror Chern number.
From the bulk-boundary correspondence, the resultant
mirror Chern number ensures the existence of surface
helical Dirac fermions, whose Fermi surfaces form FLs.
Although the surface FL accompanies bulkDirac points, it

can be stable even when C4 symmetry is lost, so the Dirac
points have gaps. Indeed, unless the C2 subgroup is broken,
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FIG. 1 (color online). (a) Schematic picture of the Dirac points
at ð0; 0;�k0Þ and the surface FL in the bulk BZ and the surface
BZ, respectively. (b) On the kz axis, a bulk Dirac point with
Q ¼ −1 in the left-hand side is decomposed into four chiral
modes with different αp in the right-hand side. The bold line is
doubly degenerate. (c) Schematic illustration of the surface
Majorana quartet in the superconducting Dirac semimetal.

PRL 115, 187001 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 OCTOBER 2015

187001-2



the system maintains mirror-reflection symmetry, which is
sufficient to stabilize the surface FL. Therefore, the structural
phase transition that breaks C4 to C2 retains the FL.
Topology of superconducting Dirac semimetals.—With a

finite carrier density, Dirac semimetals have disconnected
bulk Fermi surfaces, each of which surrounds one of the
band-touching Dirac points. See Fig. 1(a). Now consider a
superconducting state in Dirac semimetals. The system is
described by the Bogoliubov–deGennes (BdG)Hamiltonian

HBdGðkÞ ¼
�
HðkÞ − μ ΔðkÞ
Δ†ðkÞ −H�ð−kÞ þ μ

�
; ð4Þ

where HðkÞ is the Hamiltonian for Dirac semimetals
discussed above, μ is the chemical potential corresponding
to the finite carrier density, andΔðkÞ is the gap function. The
BdG Hamiltonian supports particle-hole symmetry,
CHBdGðkÞC−1 ¼ −HBdGð−kÞ, C ¼ τxK, with the Pauli
matrix τx in the Nambu space and the conjugation operator
K. Moreover, it may retain the symmetries of Dirac semi-
metals, depending on the symmetry property of the gap
function. In particular, for a gap function with C4ΔðkÞCt

4 ¼
e−iπr=2ΔðR4kÞ (r ¼ 0;…; 3), HBdGðkÞ keeps C4

symmetry, ~C4HBdGðkÞ ~C−1
4 ¼ HBdGðR4kÞ, with ~C4 ¼

diag½C4; eiπr=2C�
4�. In addition, for a mirror-even or

mirror-odd gap function that satisfies MxyΔðkÞMt
xy ¼

ηMΔðkx; ky;−kzÞ with ηM ¼ �1, the system retains
mirror-reflection symmetry, ~MxyHBdGðkÞ ~M−1

xy ¼
HBdGðkx; ky;−kzÞ, with ~Mxy ¼ diag½Mxy; ηMM�

xy�.
Correspondingly, we can introduce the C4-invariant ~Qp

and the mirror Chern numbers ~νλ for HBdGðkÞ [41,42],
in a manner similar to that used for those of HðkÞ.
The topological numbers ~Qp and ~νλ are responsible for
the existence of bulk point nodes on the ΓZ line and surface
MFs in the superconducting state, respectively.
To evaluate these topological numbers, we employ the

weak pairing assumption [31,32,35], i.e., that the super-
conducting gap is much smaller than the Fermi energy. The
gap function is reasonably negligible away from the Fermi
surface, in which we can take ΔðkÞ → 0, leading to
HBdGðkÞ → diag½HðkÞ − μ;−H�ð−kÞ þ μ�. Therefore, at
the symmetry points k ¼ Γ; Z;M; A, we can relate the
negative energy states of HBdGðkÞ to those of HðkÞ. By
taking into account the contribution from holes as well as
electrons, the number ~Np of negative energy states with
the ~C4 eigenvalue αp is evaluated as ~NpðkÞ ¼ NpðkÞþ
½N − Nph

ðkÞ�, where N is the total number of bands in
HðkÞ, ph ¼ 3 − pþ rmod 4, and the first (second) term on
the right-hand side comes from the electron (hole) con-
tribution. From this equation, the C4 invariant in the
superconducting state is obtained as

~Qp ¼
�
0 r ¼ 0 or p ¼ ph;

2Qp otherwise:
ð5Þ

Similarly, the mirror Chern number in the superconducting
state is calculated as the sum of the electron and hole mirror

Chern numbers, ~νλ ¼ νλ þ νλh , with λh ¼ −ηMλ. As TRS in
Dirac semimetals implies ν−λ ¼ −νλ, we have

~νλ ¼
�
0 ηM ¼ 1;

2νλ ηM ¼ −1:
ð6Þ

Relations (5) and (6) have important physical conse-
quences. (i) In the presence of C4 symmetry, any super-
conducting Dirac semimetal with a nontrivial r (r ¼ 1; 2; 3)
hosts point nodes as a remnant of Dirac points. Indeed,
Eqs. (1) and (5) imply that at least a couple of ~Qp are
nonzero in this case. To open a point node gap, we need to
break the C4 rotation symmetry. (ii) If the gap function is
mirror odd, the mirror Chern number of the superconduct-
ing Dirac semimetal is nonzero, resulting in double MFs. In
Fig. 1(c), we illustrate how the double MFs are created. In
general, the gap function mixes the surface FL of electrons
with that of holes so as to open a gap for the FL. In the
mirror-odd case, however, mixing is prohibited on the
mirror-invariant line in the surface BZ, so a pair of gapless
points remains for each FL, forming double MFs.
In addition to the double MFs on the mirror-invariant

line, we also find that each FL in the mirror-odd super-
conductor creates another pair of MFs on the kz axis in the
surface BZ. By combining with C and ~Mxy, the BdG
Hamiltonian for the surface FL on the kz axis, which we
denote HFL

BdGðkzÞ, has antiunitary antisymmetry,
CMHBdGðkzÞC−1

M ¼ −HFL
BdGðkzÞ, with CM ¼ i ~MxyC ¼

i ~MxyτxK. Because C2
M ¼ 1 in the mirror-odd supercon-

ductor, HFL
BdGðkzÞi ~Mxyτx is found to be real antisymmetric;

thus, by using the Pfaffian, we can introduce the
zero-dimensional topological invariant χðkzÞ ¼
sgnfPf½HFL

BdGðkzÞi ~Mxyτx�g. In the weak pairing case,
χðkzÞ is evaluated as χðkzÞ ¼ sgnfdet½HFLðkzÞ − μ�g,
where HFLðkzÞ − μ is the Hamiltonian of the surface FL
on the kz axis [62]. Therefore, χðkzÞ has different signs
inside and outside the FL, which implies that HFL

BdGðkzÞ
should have zero-energy states near the points of inter-
section between the FL and the kz axis. These zero-energy
states form a pair of MFs on the kz axis. Consequently, we
can conclude that each FL has a quartet of MFs, as shown
in Fig. 1(c). The quartet of MFs can stay gapless even when
C4 symmetry is broken, as long as mirror symmetry is
preserved.
Low-energy analysis and application to Cd3As2.—

For definiteness, we study the low-energy effective
Hamiltonian, which describes a class of Dirac semimetals
including Cd3As2 and Au2Pb. Because bands in Dirac
semimetals are doubly degenerate owing to PT symmetry,
band-touching Dirac points are minimally described by a
4 × 4 matrix Hamiltonian. Thus, in the minimal setup, we
need orbital degrees of freedom in addition to spin degrees
of freedom, which are given by the Pauli matrices σμ and sμ
in the orbital (1,2) and spin ð↑;↓Þ spaces, respectively.
The form of the 4 × 4 Hamiltonian is uniquely determined
by symmetry [3,4]. In particular, for P ¼ �σz, the low-
energy lattice Hamiltonian is given by [4]
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HðkÞ ¼fM − txyðcos kx þ cos kyÞ − tz cos kzgσzs0
þ ðη sin kxÞσxsz − ðη sin kyÞσys0
þ ðβ þ γÞ sin kzðcos ky − cos kxÞσxsx
− ðβ − γÞðsin kz sin kx sin kyÞσxsy; ð7Þ

with T ¼ iσ0syK andC4 ¼ eiðπ=4Þð2þσzÞsz . HereM, txy, tz, η,
β, and γ are material-dependent real constants. If
tz > ðM − 2txyÞ > 0, this model has a pair of Dirac points
located at k ¼ ð0; 0;�k0Þ, with k0 > 0 defined by
M ¼ tz cos k0 þ 2txy. We find ν�ið0Þ ¼ �1 and jQj ¼ 1.
Accordingly, the FL arises at the surface parallel to the kz
axis, and the Dirac points are protected by C4.
Near the Dirac points at k ¼ ð0; 0;�k0Þ, the low-energy

Hamiltonian takes the form of the Dirac Hamiltonian,
HðkÞ ¼ �tzk0ðkz∓k0Þσzs0 þ ηðkxσxsz − kyσys0Þ, which
exhibits nontrivial orbit-momentum locking. In Fig. 2(a),
we show orbital textures in the kxky plane with kz ¼ �k0 in
each spin sector, where the orientation of the orbit is tightly
locked to the direction of the momentum on the Fermi
surface. Orbit-momentum locking critically affects the
possible pairing symmetry in the superconducting state.
Indeed, we can show that constant s-wave pairing is
inconsistent with the orbital texture. First, in such a static
pairing state, electrons forming the Cooper pair have
opposite momentum to each other, so they must belong
to different Dirac points. Furthermore, as an s-wave pairing
is spin singlet, it must be formed between electrons in
different spin sectors. However, for a Cooper pair between
electrons in different Dirac points and different spin sectors,
orbit-momentum locking requires a momentum-dependent
orbital structure in the Cooper pairing, as illustrated in
Fig. 2(a). Therefore, even if the pairing interaction favors
an s-wave superconducting state, the pairing function

cannot be constant, suggesting a suppression of the critical
temperature.
On the other hand, for a Cooper pair with parallel spins,

orbit-momentum locking is consistent with a constant
pairing function. Indeed, the orbital-singlet equal-spin
pairing Δ ¼ Δ0ðc↑;1c↑;2 − c↓;2c↓;1Þ þ iΔ0

0ðc↑;1c↑;2 þ
c↓;2c↓;1Þð≡Δ∥Þ is compatible with the orbital texture in
Fig. 2(a). Such an orbital-singlet Cooper pair is realized
when the effective pairing interaction is dominated by an
attractive interorbital interaction Hint ¼ −2Vn1n2, with
nσ ¼

P
s¼↑;↓c

†
s;σðxÞcs;σðxÞ (V > 0) [31,63–65]. Although

the actual pairing interaction is material dependent, the
above results imply that doped Dirac semimetals favor the
latter gap function. Because Δ∥ is C4 symmetric with r ¼ 2

and mirror odd, i.e., C4Δ∥Ct
4 ¼ −Δ∥, it realizes a sym-

metry-protected TSC with bulk point nodes and a surface
MF quartet, as discussed previously. In Fig. 2(b), we
illustrate the quartet of MFs in this phase by numerically
calculating the surface energy spectrum of the BdG
Hamiltonian with Eq. (7) and Δ ¼ Δ∥. Here we have also
taken into account a symmetry-lowering effect from C4 to
C2 by phenomenologically adding ðm0 sin kzÞσxsx to
Eq. (7). As expected, Fig. 2(b) proves the existence of
MFs on the mirror-invariant line (Γ̄ Ȳ) and the kz axis (Γ̄ Z̄)
and moreover shows a gap in the Z̄ Γ̄ direction due to the
C4-breaking term [66]. The obtained MFs in the mirror-
invariant plane stay gapless even if the interaction effects
are taken into account [67,68].
Finally, we discuss the possible application of our theory

to superconductivity in Au2Pb and Cd3As2. For Au2Pb,
first-principles calculations show that the Fermi level of this
material is inside the gap of the Dirac points [26]; thus, no
electron near the Dirac points contributes to the Cooper
pairs. Hence, no TSC as discussed above is expected in
Au2Pb. On the other hand, the analysis above is applicable
to the recently discovered superconductor Cd3As2. In
Cd3As2, under high pressure, the structural phase transition
occurs before the superconducting transition. Together with
the orbit-momentum locking discussed above, the sym-
metry-lowering effect may stabilize the TSC phase by
increasing the condensation energy, as the point nodes in
the TSC phase are gapped when C4 is reduced to C2.
Therefore, it is likely that Cd3As2 realizes the TSC phase.
The mirror-odd gap function of the TSC is detectable via
anomalous Josephson effects [31,69] with carefully fab-
ricated junctions.
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FIG. 2 (color online). (a) Orbital textures on the Fermi surfaces
in the kxky plane with kz ¼ �k0 in the sz ¼ 1 (left) and sz ¼ −1
(right) sectors. Arrows indicate the direction of the orbit,
ðhσxi; hσyiÞ. A Cooper pair between electrons with opposite spin
may realize both of a parallel orbit pair (1) and an antiparallel one
(2), depending on the momentum. On the other hand, a Cooper
pair between electrons in the same spin state always have the
antiparallel orbit configuration (3). (b) Energy spectra at the (100)
face. μ=tz ¼ 0.5, M=tz ¼ 4, txy=tz ¼ 2, η=tz ¼ 1, β=tz ¼ 2,
γ=tz ¼ 1, Δ0=tz ¼ 0.1, Δ0

0=tz ¼ 0.01, and m0=tz ¼ 0.2. The
distance between left (x ¼ 0) and right (x ¼ L) surfaces is
L ¼ 50. The red and green lines show the FL-induced MFs.
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