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The question of whether electron-electron interactions can drive a metal to insulator transition in
graphene under realistic experimental conditions is addressed. Using three representative methods to
calculate the effective long-range Coulomb interaction between z electrons in graphene and solving for the
ground state using quantum Monte Carlo methods, we argue that, without strain, graphene remains metallic
and changing the substrate from SiO, to suspended samples hardly makes any difference. In contrast,
applying a rather large—but experimentally realistic—uniform and isotropic strain of about 15% seems to
be a promising route to making graphene an antiferromagnetic Mott insulator.
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Over the past decade, graphene has established itself as a
remarkable new material with superlative properties [1,2].
However, the early hopes to utilize it as a next-generation
transistor have been dashed, mostly because graphene
remains metallic—these prototypical Dirac fermions are
immune to many of the conventional routes for driving two-
dimensional electron gases into an insulating state, including,
for example, Anderson localization and percolation transi-
tions (see, e.g., Ref. [3]). Other mechanisms for opening band
gaps including hydrogenation [4], application of uniaxial
strain [5], and forming nanoribbons [6] severely degrade
graphene’s mobility. Very recently, moiré heterostructures
using graphene and hexagonal boron nitride have shown
evidence of an insulating phase [7,8], although interpreting
these results remains somewhat controversial [9-12].

In this Letter, we explore a different avenue to make
graphene insulating, namely, utilizing the electron-electron
interactions. Despite much study on the effects of inter-
actions in graphene [13], it is surprising how much still
remains to be understood. While it is clear that, without any
electron-electron interactions, graphene should be a semi-
metal (SM), and that for very strong interactions it should
be an insulating antiferromagnet (AFM), it remains unclear
what one should expect for the real graphene material.
For example, there are distinct claims in the literature that
suspended graphene should be insulating, strongly metal-
lic, and weakly metallic [14—16]. This discussion could
have practical relevance, as it could be the basis for a low
power Mott transistor [17].

In this work, we explore different ways of controlling the
effective strength of electron-electron interactions in real-
istic graphene devices and propose how one can move
around its phase diagram. In particular (and in contrast to
what is widely assumed to be true [2,13]), we demonstrate
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that it is the nonuniversal, material-specific, and short-
range part of the electron-electron interactions that plays
the dominant role in determining graphene’s ground state.
More interestingly, we conclude that the application of
isotropic strain is considerably more efficient in approach-
ing the SM-AFM phase transition than substrate manipu-
lation, providing a new route for driving the system into the
elusive Mott insulating phase that has yet to be observed
experimentally.

The Hubbard model has served as a versatile paradigm
to study interacting electrons on a lattice. It is defined as
an effective model for electrons in partially filled narrow
energy bands of a crystal’s spectrum. While the canonical
Hubbard model includes only on-site interactions, the
effects of longer-range interactions are incorporated by a
straightforward generalization of the two-body interaction
term, described by the Hamiltonian

ﬁ = _tZ(éleéﬂj + HC) + zﬁiTVﬁﬁii«
(ij).0 i
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where 6‘; (¢;,) creates (annihilates) an electron of spin
o = 1 at position r; while 7;, = 6;6’1-(, gives the density
of electrons with spin ¢ at position r;. The nearest neighbor
hopping integral is identified by 7, while V;; stands for the
interaction between electrons at sites i and j. We note that
a realistic description of graphene requires the parameters
V;; to be fixed in accordance with the spatial profile of the
(partially screened) Coulomb interaction V(r) that results
from the screening of the bare Coulomb interaction by

electrons in energy bands other than the z bands.
It is well established that the canonical Hubbard model
[Eq. (1) with only on-site interactions, i.e., V;; = U(> 0)
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FIG. 1 (color online). Schematics of biaxially strained graphene
(left panel). Representation of graphene’s low-energy spectrum
(right panels) of unstrained noninteracting and interacting gra-
phene at half filling and biaxially strained noninteracting and
interacting graphene at half filling.

and V;; = 0 for all i # j] on the honeycomb lattice at half
filling has a critical Hubbard on-site interaction parameter
for the SM-AFM transition U, = (3.80 £ 0.01)7 [18-20].
Following various works based on ab initio methods
(see, e.g., Refs. [21,22]), it is generally agreed that
t=(2.7+£0.2) eV. Estimates of the on-site interaction
parameter U for realistic experimental realizations of
graphene vary widely in the literature [23-26], with values
ranging from U =~ 1 to 10 eV (where the lower estimates
would suggest that graphene is metallic, while the higher
estimates hint at it being insulating).

However, ignoring longer-range interactions in graphene
is problematic, since the long-range tails of the Coulomb
potential between Dirac fermions cannot be efficiently
screened [27]. To address these Coulomb tails, it was
recently conjectured [15] that the effects of nonlocal inter-
actions can be mapped into the Hubbard model with an
on-site interaction U given by U~U-V, where U= Vii
corresponds to the on-site interaction of the long-range
Hubbard model, while V = V;;, s stands for the value of the
Coulomb potential between electrons at two neighboring
atoms on the honeycomb lattice. This effective U would
thus be the crucial factor determining graphene’s phase.
As we discuss below, our numerical calculation with the
full long-range potential shows that this approximation is
qualitatively correct but quantitatively inaccurate.

Here we study the possibility to drive graphene across
the SM-AFM phase transition by substrate manipulation or
application of biaxial (i.e., uniform and isotropic) strain—
see Fig. 1. First, we must fix the long-range Hubbard
model’s parameters V;;. These are the crucial ingredients
determining the ground state properties of the system, yet
their real values are unknown. We use three representative
methods to capture the full spatial profile of the partially
screened Coulomb interaction for p, electrons in realistic
graphene and choose V;; accordingly. These methods will
be discussed in detail below, but now we just introduce their
names: Thomas-Fermi (TF), constrained random phase

approximation (cRPA), and the quantum-chemistry—
Pariser-Parr-Pople (QC-PPP) method. We then investigate
the effect of biaxial strain and substrate manipulation on the
partially screened Coulomb potential V(r). We find (see
Fig. 2) that biaxial strain strongly modifies the V(r) close to
r =0 (not affecting the long-range interactions), while
changing the substrate (which changes both the dielectric
screening [28] and the amount of disorder [2]) only weakly
modifies the long-range tail of (r). Finally, using quantum
Monte Carlo techniques (finite temperature determinant
quantum Monte Carlo and zero-temperature projective
quantum Monte Carlo calculations), we simulate the
ground state of the long-range half-filled Hubbard model
(in the honeycomb lattice) with the V;; obtained from V(r)
and argue that, at least within the Thomas-Fermi approxi-
mation, an experimentally feasible [29,30] amount of strain
would drive graphene into an interaction-driven insulating
phase, which could be then measured in compressibility,
transport, or scanning probe experiments.

We now detail the three methods that we use to estimate
the partially screened Coulomb interactions that p, electrons
feel. (These were chosen since they are very representative
of the different approaches that have so far been used in
the literature.) The cRPA method (see, e.g., Ref. [31]) was
adapted to graphene by Wehling et al. [25]. In a systematic
way, this method makes use of the electronic structure of
graphene to compute, within the random phase approxima-
tion, the polarization function P, associated with all the
interaction events other than those involving two electrons
from the z bands. Then, the effective (partially) screened
Coulomb interaction felt by the p, electrons is given by
V(I”) = {1 - Vbare(r)Pr]_]Vbare(r)’ where Vbare(r) stands
for the bare Coulomb potential. The accuracy of this method
has long been debated in the literature (see, e.g., Ref. [32]),
and its results are often difficult to interpret physically. For
graphene, the fact that the Dirac band spans a broad energy
window further complicates the application of the cRPA
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FIG. 2 (color online). Effect of biaxial strain (left panel) and
substrate (right panel) on the partially screened Coulomb inter-
action. We use three representative models: cRPA, circles and full
curves; QC-PPP, squares and dashed curves; and TF, triangles
and dot-dashed curves. (a) Suspended graphene both unstrained
and subject to 18% biaxial strain. (b) Unstrained graphene both
suspended and deposited on SiO, compared to the bare Coulomb
potential.
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formalism. Notwithstanding these difficulties, the cRPA
remains the best numerical technique at our disposal to
determine the V;; for graphene. In this Letter, we use the
cRPA results previously obtained in Ref. [25], which
compute U, V, and ¢ for biaxial strains up to 12%. In this
range of strains, all these parameters show a linear behavior.
In order to obtain the cRPA values of U, V, and ¢ for up to
18% strain [see Fig. 2(a)], we have assumed that this linear
behavior remains unchanged, extracting U, V, and ¢ from a
linear fit to the numerical results of Ref. [25].

The QC-PPP method (see, e.g., Vergés et al. [33]) works
by using ab initio Hartree-Fock and post-Hartree-Fock
techniques to solve for the ground state energy of molecules
comprising a small number of benzene rings. These energies
are then compared to an exact diagonalization of the long-
range Hubbard model where the Ohno interpolation formula
V(r) = U/+\/1+ (Ur/e*)? is assumed for the Coulomb
interaction. The V(0) = U is a free parameter that is fixed by
requiring the minimization of the root-mean square of the
ground state energy of the ab initio calculations and that of
the long-range Hubbard model. The QC-PPP values of U and
V used in this Letter were extracted from Ref. [33], which
calculates V(r) for the phenalenyl (3H — C;3Hy) molecule.
This method gives an upper bound for the Hubbard U in
graphene, since larger molecules would have more screening
and reduced V(r). Both the validity of the Ohno interpolation
and the extrapolation to larger system sizes give some
reasons for caution. It has nonetheless proven extremely
useful for small z-conjugated planar polycyclic aromatic
hydrocarbons comprising tens of atoms such as anthracene
and polyacenes [33,34].

Finally, inspired by the work of Jung and MacDonald
[26], we have constructed a Thomas-Fermi model to
account for the screening of higher energy bands in
graphene. Within the Thomas-Fermi screening approxima-
tion, the on-site interaction U is given by

e kolri—r2

2
U_:%/d3r1d3r2|¢(r1)|27|¢(r2)

% (2)
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while the Coulomb interaction between two z-bands’
electrons positioned at neighboring atoms (distance o) V
is given by

e~ kolri—12]
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Here, ¢(r) stands for the p. orbital wave function (which
we approximate by that of atomic hydrogen). The free
parameter k, in Egs. (2) and (3) is fixed by requiring that
the hopping integral

[EAVZ &2 e—k0|r—R,-\

t:/d3r¢*(r+5) [— - +@Zm}¢(r)
(4)

is equal to the literature-accepted value of 1, = 2.7 eV [21].
In parallel with what we do for the other two methods, we
then interpolate between V;;’s short-range values U and V
and the long-range tail of V;; (see below). The procedure
used to compute V;; of biaxially strained graphene is
similar to that discussed earlier [34].

The computationally demanding method employed pre-
vents us from simulating large size systems. In particular,
one must include the effect of the surrounding electrons,
since their interband polarizability contributes at all length
scales [2], thus modifying the effective dielectric constant
from 1/r to 1/[r(1 + zry/2)], where r, = 2e?/[(x, +
Kkp)hvp] is the effective fine structure constant (where «,
and «, are the dielectric constants above and below the
graphene flake, respectively). The presence of disorder in
the substrate can also be accounted for by introducing a
modified screening function (see, e.g., Ref. [35]). The full
profile of the partially screened Coulomb interaction is
obtained by interpolating between the short-range results at
first neighbor distance and the long-range tail (assumed to
start at the fourth neighbor).

As we can see in Fig. 2, the short-range part of the partially
screened Coulomb interactions V(r) is strongly affected
by biaxial strain (left panel), while its long-range tails are
nearly insensitive to strain. Manipulating the substrate has a
very weak effect on the long-range tails of the partially
screened Coulomb interactions (right panel).

With the electron-electron interaction profiles of Fig. 2,
we have fixed the long-range Hubbard model’s parameters
V;; and explored its ground state using auxiliary field
quantum Monte Carlo simulations (made possible by recent
works [16,36,37])—a numerically exact method for inves-
tigating strongly correlated systems. In this Letter, we use
different implementations of the auxiliary field quantum
Monte Carlo technique: finite temperature determinant
quantum Monte Carlo (DQMC) calculations, whose cor-
relation functions are given by

(0) =506 = - [ Dy Je00p1). (5)

(we refer the reader to Ref. [38] for details), and zero-
temperature projective quantum Monte Carlo (PQMC) (for
details, see, e.g., Ref. [39]), where the correlation functions
are given by

(0) = (®o|O]@y) lim (Wr|e=®1/20e 02| Wy) (6)

(®o|®g)  ©- (Uy|e=®H W)
In both cases, we use a Hubbard-Stratonovich transforma-
tion to convert the interaction term into a noninteracting
term coupled to an auxiliary field. This transformation
enables us to treat Hubbard models with nonlocal electron
interactions, provided that the long-range interaction gives
rise to a transformation matrix that is positive definite
(a nonpositive definite transformation matrix corresponds
to a diverging auxiliary field).
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In particular, we find that the transformation matrix for
the case where the V;; is obtained from the QC-PPP method
is not positive definite. This is a direct consequence of the
interpolation scheme mentioned above, which renders the
off-diagonal matrix elements associated with the nonlocal
interaction comparable with the diagonal elements asso-
ciated with the local interactions. As a result, we could not
use quantum Monte Carlo calculations to simulate the
QC-PPP model.

In the DQMC, we used inverse temperature f = (1/7T)
in Eq. (5) between 24 and 36, which is sufficient to probe
the low-energy behavior of the system. In the PQMC, we
chose the Hartree-Fock state as our trial wave function,
|¥;), using ©r =40 [see Eq. (6)] to project the wave
function onto the ground state. We made use of the scaling
behavior of the antiferromagnetic structure factor (Sapy) to
estimate the magnetic state of the system:

SArm = éZ[<miAmjA> + (migm;p)], (7)

where m;c stands for the magnetization of the site located
in the atom of sublattice C = A, B of the unit cell r;,
while L? is the number of unit cells (i.e., N = 2L? sites).
The system’s AFM order parameter is given by

Mmarm = \/Sarm/(2L?). We have simulated lattice sizes
between L = 6 and L = 15. In order to take finite size

effects into account, we utilize 7izpy = mapyL??, where
we use the critical exponents /v~ 0.9 (obtained from
the best data collapse in Ref. [36]), compatible with the
Gross-Neveu universality class [20,40]. _

Figure 3 shows the dependence of m gy and Sppy With
the system size. For unstrained graphene, both the cRPA
and TF methods show Sagy decreasing with system size
(and mppy extrapolating to zero in the thermodynamic
limit L — o0), indicating that, without strain, suspended
graphene is metallic (in agreement with experimental
observations). However, most interestingly, with 18%
biaxial strain, the TF model shows Sugy increasing with
the system size (with mapy extrapolating to a nonzero
value when L — o), indicating an antiferromagnetic Mott
insulator in the thermodynamic limit. This corresponds
to an interaction-driven gap of A = (0.55+0.05) eV,
comparable to estimates in Ref. [41] obtained by hybrid
density functional calculations (Hartree-Fock exchange
hybridized with generalized gradient approximation for
the exchange correlation) that do not accurately treat the
effects of electron correlations. Moreover, within the
Thomas-Fermi method, our QMC calculations find a
critical strain of 7.~ 0.15. Notice that, in this case,
U=U-V =34t < U,, demonstrating that the sugges-
tion by Ref. [15] for mapping the long-range Hubbard
model for graphene into an effective on-site Hubbard model
is quantitatively inaccurate.

Although the TF method has no adjustable parameters, it
assumes that the Coulomb interaction between p, electrons

0 : : | o PQMC F
i ' ' ' ‘ | o DQMC [
2+ |
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FIG. 3 (color online). Antiferromagnetic (AFM) order param-
eter mapy = \/Sapm/(2L?) (top) and scaled antiferromagnetic
structure factor SxpyL?/Y/N (bottom) in terms of the inverse
system size. We have used both projective quantum Monte Carlo
(blue) and determinant quantum Monte Carlo (red) calculations
to study the phase of graphene subject to: 18% biaxial strain
within the Thomas-Fermi model (upper points); 18% biaxial
strain within the constrained RPA model (middle points); and 0%
strain within both the Thomas-Fermi and the constrained RPA
models (lower points). We could not simulate the quantum-
chemistry—Pariser-Parr-Pople model with auxiliary field quantum
Monte Carlo calculations, since its partially screened Coulomb
potential gives rise to diverging auxiliary fields.

on the same atom and between neighboring atoms is screened
in the same way [26]. This assumption slightly overestimates
the ratio U/V, giving a smaller critical strain 7, for the
SM-AFM transition. On the other hand, the canonical cRPA
method ignores bandwidth and low-energy spectral weight
reduction originating from integrating out the high-energy
bands [32]. This gives rise to artificially weak partially
screened Coulomb interactions, resulting in an overestima-
tion of the critical strain #,. Because of finite sizes, the PPP
model overestimates the value of U and V, and the Ohno
interpolation underestimates their difference. However, look-
ing at the three models together, we therefore conclude that
the profile of the Coulomb potential for realistic graphene
lies somewhere in between the TF and cRPA estimates. The
TF model gives a maximum Mott gap of more than an order
of magnitude larger than room temperature, and this value
sets the upper bound for experiments.

In summary, using the best available models in the
literature to estimate the effective Coulomb interaction
between p,_ electrons in graphene, we have employed
quantum Monte Carlo simulations to explore graphene’s
phase diagram in response to parameters that can be
changed experimentally. We have found, surprisingly, that
manipulating the short-range part of the effective Coulomb
potential (i.e., the nonuniversal and material-specific
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component) is the crucial factor in determining the phase of
graphene. Most importantly, we show that the application
of experimentally realistic amounts of isotropic strain is a
promising route to cross the SM-AFM quantum phase
transition and to observe a strongly correlated state in this
otherwise weakly interacting material.

H.-K. T. thanks Miguel Costa for helpful insights. S. A.
thanks Garnet Chan, Jeil Jung, and Timo Léhde for fruitful
discussions. H.-K. T., J.N. B.R., and S. A. are supported
by the National Research Foundation of Singapore under
its Fellowship program (NRF-NRFF2012-01) and by the
Singapore Ministry of Education and Yale-NUS College
through Grant No. R-607-265-01312. P. S. is supported by
the Ministry of Education of Singapore through Grant
No. MOE2011-T2-1-108. F. F. A. acknowledges the finan-
cial support from DFG Grant No. AS120/9-1. We acknowl-
edge the use of the CA2DM and GRC high-performance
computing facilities.

[1] A. H.Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[2] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev.
Mod. Phys. 83, 407 (2011).

[3] M. S. Fuhrer and S. Adam, Nature (London) 458, 38 (2009).

[4] D. Elias et al., Science 323, 610 (2009).

[51 Z.H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng, and Z. X.
Shen, ACS Nano 2, 2301 (2008).

[6] M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev.
Lett. 98, 206805 (2007).

[7] B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M.
Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P.
Moon, M. Koshino, P. Jarillo-Herrero, and R. C. Ashoori,
Science 340, 1427 (2013).

[8] L. A. Ponomarenko, A.K. Geim, A.A. Zhukov, R. Jalil,
S. V. Morozov, K. S. Novoselov, I. V. Grigorieva, E. H. Hill,
V. V. Cheianov, V. I. Fal’ko, K. Watanabe, T. Taniguchi, and
R. V. Gorbachev, Nat. Phys. 7, 958 (2011).

[9] J. Jung, A.M. DaSilva, A. H. MacDonald, and S. Adam,
Nat. Commun. 6, 6308 (2015).

[10] B. Amorim, A. Cortijo, F. de Juan, A.G. Grushin, F.
Guinea, A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R.
Roldan, P. San-José, J. Schiefele, M. Sturla, and M. A. H.
Vozmediano, arXiv:1503.00747.

[11] F. Guinea and M.I. Katsnelson, Phys. Rev. Lett. 112,
116604 (2014).

[12] S. Das Sarma, E. H. Hwang, and Q. Li, Phys. Rev. B 85,
195451 (2012).

[13] V.N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, and A. H.
Castro Neto, Rev. Mod. Phys. 84, 1067 (2012).

[14] J.E. Drut and T. A. Lihde, Phys. Rev. Lett. 102, 026802
(2009).

[15] M. Schiiler, M. Rosner, T. O. Wehling, A. . Lichtenstein,
and M. I. Katsnelson, Phys. Rev. Lett. 111, 036601 (2013).

[16] M. V. Ulybyshev, P. V. Buividovich, M. I. Katsnelson, and
M. L. Polikarpov, Phys. Rev. Lett. 111, 056801 (2013).

[17] M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono,
M. Kawasaki, Y. Iwasa, and Y. Tokura, Nature (London)
487, 459 (2012).

[18] S. Sorella, Y. Otsuka, and S. Yunoki, Sci. Rep. 2, 992
(2012).

[19] E. F. Assaad and I.F. Herbut, Phys. Rev. X 3, 031010
(2013).

[20] F. Parisen Toldin, M. Hohenadler, F. F. Assaad, and I. F.
Herbut, Phys. Rev. B 91, 165108 (2015).

[21] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Phys.
Rev. B 66, 035412 (2002).

[22] J. Jung and A.H. MacDonald, Phys. Rev. B 87, 195450
(2013).

[23] O. V. Yazyev, Phys. Rev. Lett. 101, 037203 (2008).

[24] S. Dutta, S. Lakshmi, and S.K. Pati, Phys. Rev. B 77,
073412 (2008).

[25] T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein,
M.1. Katsnelson, and S. Bliigel, Phys. Rev. Lett. 106,
236805 (2011).

[26] J. Jung and A.H. MacDonald, Phys. Rev. B 84, 085446
(2011).

[27] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma,
Proc. Natl. Acad. Sci. U.S.A. 104, 18392 (2007).

[28] C.Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma,
and M. S. Fuhrer, Phys. Rev. Lett. 101, 146805 (2008).

[29] K. S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J. M. Kim, K. S.
Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature
(London) 457, 706 (2009).

[30] V.M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Phys.
Rev. B 80, 045401 (2009).

[31] F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schonberger,
Phys. Rev. B 74, 125106 (2006).

[32] M. Casula, P. Werner, L. Vaugier, F. Aryasetiawan, T.
Miyake, A.J. Millis, and S. Biermann, Phys. Rev. Lett.
109, 126408 (2012).

[33] J. A. Vergés, E. SanFabidn, G. Chiappe, and E. Louis, Phys.
Rev. B 81, 085120 (2010).

[34] Given the lack of published QC-PPP computations for
strained aromatic hydrocarbon molecules, we have obtained
the long-range Hubbard model parameters for graphene
subject to 18% biaxial strain (i.e., # = 0.18) from the
unstrained V(r) computed by Ref. [33] but with
r — (1 4+ n)r, while the hopping parameter ¢ was obtained
from the results of Pereira and co-workers: ¢t — tye=>3""
(see Ref. [30] for details).

[35] S. Adam, S. Jung, N.N. Klimov, N.B. Zhitenev, J. A.
Stroscio, and M. D. Stiles, Phys. Rev. B 84, 235421 (2011).

[36] M. Hohenadler, F. Parisen Toldin, I. F. Herbut, and F. F.
Assaad, Phys. Rev. B 90, 085146 (2014).

[37] R.C. Brower, C. Rebbi, and D. Schaich, Proc. Sci.,
Lattice2011 (2011) 056.

[38] R.R.d. Santos, Braz. J. Phys. 33, 36 (2003).

[39] E. F. Assaad, Quantum Monte Carlo Methods on Lattices:
The Determinantal Approach (John von Neumann Institute
for Computing, Jiilich, 2002), pp. 99-156.

[40] L. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006).

[41] S.-H. Lee, S. Kim, and K. Kim, Phys. Rev. B 86, 155436
(2012).

186602-5


http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1038/458038a
http://dx.doi.org/10.1126/science.1167130
http://dx.doi.org/10.1021/nn800459e
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1126/science.1237240
http://dx.doi.org/10.1038/nphys2114
http://dx.doi.org/10.1038/ncomms7308
http://arXiv.org/abs/1503.00747
http://dx.doi.org/10.1103/PhysRevLett.112.116604
http://dx.doi.org/10.1103/PhysRevLett.112.116604
http://dx.doi.org/10.1103/PhysRevB.85.195451
http://dx.doi.org/10.1103/PhysRevB.85.195451
http://dx.doi.org/10.1103/RevModPhys.84.1067
http://dx.doi.org/10.1103/PhysRevLett.102.026802
http://dx.doi.org/10.1103/PhysRevLett.102.026802
http://dx.doi.org/10.1103/PhysRevLett.111.036601
http://dx.doi.org/10.1103/PhysRevLett.111.056801
http://dx.doi.org/10.1038/nature11296
http://dx.doi.org/10.1038/nature11296
http://dx.doi.org/10.1038/srep00992
http://dx.doi.org/10.1038/srep00992
http://dx.doi.org/10.1103/PhysRevX.3.031010
http://dx.doi.org/10.1103/PhysRevX.3.031010
http://dx.doi.org/10.1103/PhysRevB.91.165108
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1103/PhysRevB.87.195450
http://dx.doi.org/10.1103/PhysRevB.87.195450
http://dx.doi.org/10.1103/PhysRevLett.101.037203
http://dx.doi.org/10.1103/PhysRevB.77.073412
http://dx.doi.org/10.1103/PhysRevB.77.073412
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevB.84.085446
http://dx.doi.org/10.1103/PhysRevB.84.085446
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1103/PhysRevLett.101.146805
http://dx.doi.org/10.1038/nature07719
http://dx.doi.org/10.1038/nature07719
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.74.125106
http://dx.doi.org/10.1103/PhysRevLett.109.126408
http://dx.doi.org/10.1103/PhysRevLett.109.126408
http://dx.doi.org/10.1103/PhysRevB.81.085120
http://dx.doi.org/10.1103/PhysRevB.81.085120
http://dx.doi.org/10.1103/PhysRevB.84.235421
http://dx.doi.org/10.1103/PhysRevB.90.085146
http://dx.doi.org/10.1590/S0103-97332003000100003
http://dx.doi.org/10.1103/PhysRevLett.97.146401
http://dx.doi.org/10.1103/PhysRevB.86.155436
http://dx.doi.org/10.1103/PhysRevB.86.155436

