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We investigate many-body localization in the presence of a single-particle mobility edge. By considering
an interacting deterministic model with an incommensurate potential in one dimension we find that the
single-particle mobility edge in the noninteracting system leads to a many-body mobility edge in the
corresponding interacting system for certain parameter regimes. Using exact diagonalization, we probe the
mobility edge via energy resolved entanglement entropy (EE) and study the energy resolved applicability
(or failure) of the eigenstate thermalization hypothesis (ETH). Our numerical results indicate that the
transition separating area and volume law scaling of the EE does not coincide with the nonthermal to
thermal transition. Consequently, there exists an extended nonergodic phase for an intermediate energy
window where the many-body eigenstates violate the ETH while manifesting volume law EE scaling. We
also establish that the model possesses an infinite temperature many-body localization transition despite the
existence of a single-particle mobility edge. We propose a practical scheme to test our predictions in atomic
optical lattice experiments which can directly probe the effects of the mobility edge.
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Thermalization, a commonplace phenomenon in various
physical settings, can naturally fail in isolated disordered
quantum interacting systems, making standard concepts of
quantum statistical mechanics invalid. The fundamental
theoretical underpinning of thermalization in quantum
systems has been postulated in the form of the eigenstate
thermalization hypothesis (ETH) [1,2]. Recently, it has
been shown using perturbative arguments that the presence
of interaction and disorder in a closed quantum system
could lead to many-body localization (MBL) [3] with such
an interacting quantum MBL state being nonthermal.
A hallmark of MBL is its violation of the ETH [2],

where a local subsystem fails to thermalize with its
environment [4]. MBL has now been established non-
perturbatively in lattice models with finite energy density,
where numerical evidence points towards the existence of
MBL all the way to infinite temperature [5,6]. Further
numerical work [7–9] and a rigorous mathematical proof
[10] for the existence of the MBL phase have mounted
compelling evidence for the existence of such a “finite-
temperature”MBL phase which eventually gives way to an
extended phase at strong enough interaction. Although
much of the MBL work has focused on the interacting one-
dimensional (1d) fermionic Anderson model with random
disorder [11] (and closely related spin models), it turns out
that MBL also exists without any disorder [8,12,13] for the
Aubry-Andre-Azbel-Harper (AAAH) model [14–16],
which is a nonrandom 1d model with a quasiperiodic
on-site potential. We emphasize that neither the 1d
Anderson model nor the AAAH model manifests a
single-particle mobility edge (SPME).

In the absence of a SPME, interactions act on the Fock
space of Slater determinants of either completely localized
or delocalized single-particle eigenstates. Therefore, intro-
ducing a SPME allows one to study how localized and
delocalized eigenstates will interact, thus introducing
qualitatively new physics. There are several deterministic
1d incommensurate models with SPMEs in the literature
[17–23], which can be adapted for studying MBL in the
presence of a SPME.
We consider a recent generalization [23] of the 1d

AAAH model with an analytical expression for the
SPME, which enables us to study the interplay of many-
body effects and the SPME in a controlled fashion. Since
the MBL phase is a property of all eigenstates, the presence
of a mobility edge adds a new dimension to the problem as
both localized and delocalized single-particle orbitals are
now present in the problem. Using exact diagonalization
we find for certain parameter regimes of the model the
following: (1) The existence of a many-body mobility edge
(EL) characterized by the area to volume law scaling of
entanglement entropy (EE). (2) A distinct energy scale (ET)
that separates a thermal (i.e. ergodic) and nonthermal
region in energy, which is established by directly consid-
ering an ETH violation based on the criterion in
Refs. [1,2,24]. (3) Our results suggest ET ≠ EL and
consequently the existence of a nonergodic regime with
volume law EE scaling between ET and EL. All three of our
findings are completely novel differing drastically from
previous studies suggesting a sharp many-body mobility
edge [9,25,26]. To guide future experiments that could
probe our predicted mobility-edge physics, we present a
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realistic scheme with a straightforward modification to the
existing experimental setup [27–29].
The model we consider is a generalized Aubry-Andre

(GAA) model [23], H ¼ H0 þHint,

H0 ¼−t
XL

j¼1

ðc†jcjþ1þH:c:Þþ 2λ
cosð2πqjþϕÞ

1−αcosð2πqjþϕÞnj;

Hint ¼ V
X

j

njnjþ1; ð1Þ

where cj is a fermionic annihilation operator, nj ¼ c†jcj,
and the tunneling t is the energy unit throughout. We focus
only on the fermionic case here. We consider α ∈ ð−1; 1Þ,
with the AAAH model corresponding to α ¼ 0. In the
noninteracting limit, the GAA model with an irrational
wave number q [we fix q ¼ 2=ð1þ ffiffiffi

5
p Þ, with no loss of

generality], has a SPME [23] at αϵ ¼ 2sgnðλÞðjtj − jλjÞ
[30]. In this model, the particle number

P
jnj ¼ N is

conserved.
Interaction effects on localization and thermalization in

the presence of SPME.—We study interaction effects on
localization and thermalization for the model Hamiltonian
H using exact diagonalization. In the AAAH model
(α ¼ 0), the noninteracting many-body wave function is
a Slater determinant of all localized or all extended single-
particle orbitals. This results in the interacting AAAH
model having all many-body states either localized and
nonthermal or extended and thermal [8].
However, for the noninteracting GAA model (with

α ≠ 0), there are more possibilities originating from the
SPME, where the Slater determinant can be composed of
both localized and extended single-particle orbitals. Adding
interactions to such a system may result in richer many-
body states where the localization and thermalization
properties may be qualitatively different from the α ¼ 0
case. To this end, we employ separate diagnostics to study

localization and ergodicity without making the common
assumption that thermalization and delocalization must
necessarily be intrinsically connected in an interacting
system. To investigate the localization properties, we cut
the lattice at site l, which divides it into two subsystems A
and B; we then calculate the energy resolved Rényi entropy
S2ðlÞ ¼ − logðTrρ2AÞ of A involving lattice sites 1; 2;…; l,
whose reduced density matrix is obtained by tracing out
region B at the other sites (lþ 1, lþ 2;…; L) [31]. The EE
scaling reliably tracks the localization transition, where
localized and delocalized many-body states are quantified
by the area law (S2 ∼ Ld−1) and volume law scaling
(S2 ∼ Ld), respectively [4,8]. To understand the thermal-
ization features we calculate the observable OðEÞ,

OðEÞ ¼
XL=2

j¼1

hΨEjnjjΨEi; ð2Þ

with jΨEi a many-body eigenstate. The large fluctuation in
OðEÞ among eigenstates that are nearby in energy is a
signature for the violation of the ETH [24].
We begin by focusing on the MBL transition as a

function of energy for fixed model parameters. In Fig. 1
we show the energy resolved S2ðl ¼ L=2Þ for various
system sizes. We find eigenstates with an energy below a
certain value EL are localized with an EE that obeys area
law scaling (S2ðL=2Þ ∼ L0) [4], whereas the eigenstates
with an energy above EL exhibit a volume law scaling of
the EE [S2ðL=2Þ ∼ L] and are thus extended. We define
EL where S2ðL=2Þ splays out in system size as shown in
Fig. 1(b). Thus EL defines the many-body mobility edge,
which separates states with an area law scaling from
extended states with volume law scaling. Although the
existence of the many-body mobility edge EL in our model
is already a significant result, below we discuss the key
issue of whether EL also defines the ergodic properties of
the interacting system.

FIG. 1 (color online). Energy dependent ergodicity for interacting fermions. (a), A scenario for many-body mobility edge physics as
we have found for the GAAmodel. (b) The bipartite Rényi entropy. The eigenstates above EL have extensive EE, and are thus extended;
whereas the states below EL exhibit EE of area law scaling and are localized. (c) The energy dependence of an observableOðEÞ [Eq. (2)]
with L ¼ 30. The inset shows the fluctuation var½O� (see main text) for different system sizes, using the same plot scheme as in (b). The
fluctuation of O for states E > ET is small and gets significantly larger for states E < ET . The system is expected to be thermal
(nonthermal) above (below) ET . (The slight increase of var½O� near E=N ≈ 1.2 is an artifact from the small number of states close to the
spectra edge.) Our numerical results suggest EL < ET . In this plot, the filling is fixed at 1=6, and we use λ=t ¼ 0.3, V=t ¼ 1, and
α ¼ −0.80, and we average over ϕ for better statistics [30]. In the calculation for system size L ¼ 30, we use inverse Lanczos and target
500 interior eigenstates.
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We now come to the thermalization properties, which are
captured by the energy resolved observableOðEÞ as shown
in Fig. 1(c). The fluctuations of OðEÞ within a narrow
energy window are quantified by their variance, denoted as
var½O� [30]. As shown in Fig. 1(c) there is a clear energy
threshold ET that separates two qualitatively different
regimes. In the energy window (E > ET), the fluctuations
of O among nearby eigenstates are small, for which the
ETH is satisfied and the eigenstates are thermal [24]. The
spread of the observable broadens out for energies E < ET ,
where the fluctuations are significantly larger, leading to a
violation of ETH [24]. We emphasize here that the thermal
to nonthermal transition is unique to interacting systems,
and is absolutely absent without interactions [24,32].
Our numerical results suggest that the MBL and thermal

transitions in energy do not coincide, EL ≠ ET (see Fig. 1).
In particular, our numerics imply that ET > EL, and as a
result there exists an energy window (EL < E < ET) where
the many-body states are nonergodic (violate the ETH) but
remain extended (volume law scaling of EE). Therefore, we
conclude that in this interacting many-body system with
SPME two critical energy scales EL and ET exist, which is
qualitatively different from the scenario of a sharp many-
body mobility edge [26]. We emphasize that our results are
completely distinct from the model in the absence of a
SPME (α ¼ 0), which has no many-body mobility edge
and all of the eigenstates are either thermal and delocalized
or nonthermal and localized [30]. Thus our numerical
results point to the existence of a nonergodic extended
regime defined as EL < E < ET . The possible existence of
a nonergodic extended (i.e. metallic) phase in the vicinity of
the MBL transition has been speculated in the literature
with no concrete examples [33–35].
Noninteracting many-body states.—In the following, we

develop a physical intuition for the observed many-body
mobility edge. The noninteracting many-body states are
trivially nonergodic and violate ETH [36], as shown in
Fig. 2(c) for V ¼ 0 where the energy dependence of OðEÞ

manifests large fluctuations among eigenstates that are
nearby in energy [24]. We will discuss the noninteracting
limit to gain insight into the emergence of the nonergodic
extended phase in the interacting case.
Without interactions, the many-body eigenstate of N

fermions is a product state of N single-particle orbitals.
In the presence of SPME, there are three different ways of
constructingmany-body states [Fig. 2(a)]: (i) all particles put
in localized single-particle orbitals, (ii) all particles put in
extended orbitals, and (iii) some particles put in localized
and others in extended orbitals, which respectively give
localized, extended, and partially extended many-body
states. The partially extended states have extensive EE
[Fig. 2(b)]. (We mention that the partially extended states
would appear localized [30] from the perspective of the
normalized participation ratio [8].) Such partially extended
many-body states lead to important consequences. Consider
a model with single-particle energies ϵ1 < ϵ2 < … < ϵL
having a SPME ϵm⋆ , such that the states with ϵm≤m⋆ (ϵm>m⋆ )
are localized (extended). The lowest energy for a
fermionic many-body partially extended state is EA ¼
ϵm⋆þ1 þ

P
N−1
m¼1 ϵm. The highest energy of a localized state

is EB ¼ P
m⋆
m¼m⋆−Nþ1 ϵm. For a general Hamiltonian, EB >

EA is the most typical scenario [37]. The many-body states
with energy < ð>Þ EA are completely localized (extended,
partially extended, or localized); the states above EB are
extended or partially extended. In the energy regime
EB > E > EA, however, localized and partially extended
states are coexisting by virtue of the SPME in the spectrum
which enables the existence of this mixed intermediate
energy regime.
Putting the noninteracting and interacting results all

together, a physical picture naturally emerges. Interaction
effects on the extended many-body states lead to thermal
behavior, whereas for localized states, interactions make
them nonthermal. The most interesting case is the coex-
istence of partially extended and localized states, where
interactions could stabilize a nonthermal extended phase.
Such a physical scenario is possible and seems to be
consistent with our numerics.
The MBL phase in the GAA model.—Past studies have

established the existence of a MBL phase (with all
eigenstates localized) in the AAAH model [8,12] at infinite
temperature. The infinite temperature limit is defined by
averaging observables over all energy eigenstates (i.e. with
a thermal weighting factor equal to unity). For the non-
interacting GAA model with a SPME, the average is
performed over localized, extended, and partially extended
states, thus leading to extended behavior; e.g., the averaged
EE obeys volume law. For the interacting case, in contrast
to MBL studies in the absence of SPME where interactions
make the system more extended, we find that interactions
could actually stabilize the infinite temperature MBL phase
in a considerable parameter region of the model in Eq. (1).
To capture the MBL transition at infinite temperature, in

addition to the EE scaling (averaged over all eigenstates), we
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FIG. 2 (color online). Localization and nonthermalization of
noninteracting fermions with a SPME. Here we simulate 5
particles in 30 sites. We take the GAA model with λ=t ¼ 0.3,
α ¼ −0.8, with mobility edge ε0=t ¼ −1.75. (a) Different pos-
sibilities of many-body states. As shown the partially extended
state as marked by 3 could have approximately the same energy
as the localized one marked by 2. (b) Entanglement scaling for the
three types of states, localized, extended and partially extended.
The partially extended states exhibit extensive EE, similar to the
extended ones. In (c) we show the energy dependence of
O [Eq. (2)].
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present the level statistics, an established diagnostic forMBL
[5,8]. We consider the dimensionless adjacent gap ratio,

rn ¼ minðδn; δnþ1Þ=maxðδn; δnþ1Þ;
where δn ¼ Enþ1 − En. We calculate its average r̄ ¼
ð1=VHÞ

P
nrn (VH is the Hilbert space dimension), to locate

the MBL phase [5].
As shown in Fig. 3, when the incommensurate potential

strength λ is weak, the EE is extensive, a signature for the
system being extended. The average adjacent gap ratio is
r̄ ≈ 0.53, which implies that the energy spectra satisfy
Gaussian orthogonal ensemble level statistics, and the
many-body phase is delocalized [5,8,38]. When λ is above
a certain threshold λcðα; VÞ, the model undergoes the MBL
transition. In this parameter regime, the EE obeys area law
scaling [Fig. 3(c)], and the gap ratio becomes r̄ ¼ 0.39
[Fig. 3(f)], which is consistent with eigenstates satisfying a
Poisson distribution, and the model is in the MBL phase
[4,5,8,38]. We emphasize that for λ > λc in the presence of
delocalized single-particle orbitals, the MBL phase can still
be stabilized by interactions. For example, with λ=t ¼ 1.5
and α ¼ −0.80, although the noninteracting case is not
completely localized due to the SPME, the interacting
system is completely localized as implied by the EE
[Fig. 3(a)], adjacent gap ratio [Fig. 3(d)], and their system
size dependence [Figs. 3(c) and 3(f)]. In addition, starting
from α ¼ 0 (with no SPME) as α → −0.99, where more
localized orbitals are mixed in, we find both S2ðL=2Þ and r̄

decrease as displayed in Figs. 3(b) and 3(e). To conclude,
we have established the existence of an MBL phase at
infinite temperature in the presence of SPME.
Experiment.—To study the MBL phase in the AAAH

model, a two-component Fermi gas of K40 atoms has been
recently confined in a 1d superlattice with optical potential,
V0cos2ðkxÞ þ V1cos2ðk0xÞ [27], with k0 incommensurate to
k. To investigate our predicted mobility edge physics, we
propose to add an additional potential, V2cos2ð2k0xÞ.
Choosing V0 ¼ 5Er, V1 ¼ 0.13Er, and V2 ¼ 0.026Er
(Er is the single-photon recoil energy) [39], the non-
interacting model in Eq. (1) with λ=t ¼ 1, and α ¼ 0.2
is approximately realized [30], and its localization proper-
ties are described in Ref. [23]. Preparing an initial state with
its average energy in the nonthermal extended region, its
unitary evolution would provide direct observation of
nontrivial relaxation of an interacting many-body state in
the presence of SPME [24,40]. As the numerical simu-
lations on classical computers are limited in terms of
system size, the quantum simulator, atoms in the optical
lattice, would clarify the thermodynamic limit of our
proposed nonergodic and MBL phenomena.
Conclusions.—In summary, we have shown the single-

particle mobility edge and interactions result in a many-
body mobility edge. A central new result here is the
existence of two characteristic many-body energies (i.e.
EL and ET) in general in a system with a corresponding
SPME, which separate localized and extended states (EL)
and nonergodic and thermal states (ET). Our numerical
results (within our numerical accuracy and within the finite
size limitations) suggest EL < ET , which allows for the
possibility of nonergodic delocalized many-body states (i.e.
a nonergodic metal) as a strange new intermediate phase of
quantum matter. We expect our findings to generically
apply to systems with SPME, specifically, to the three-
dimensional interacting disordered Anderson model.
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Note added.—After completing our work we became aware
of a complementary and independent recent study [42] of
many-body localization in systems with mobility edges.
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