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Quasi-two-dimensional itinerant fermions in the antiferromagnetic (AFM) quantum-critical region of their
phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a
resistivity varying linearly with temperature and a contribution to specific heat or thermopower proportional to
T lnT. It is shown,here, thatagenericmodelof itinerant anti-ferromagnet canbecanonically transformedso that
its critical fluctuations around the AFM-vectorQ can be obtained from the fluctuations in the long wavelength
limit of a dissipative quantumXYmodel.The fluctuationsof thedissipativequantumXYmodel in2Dhavebeen
evaluated recently, and in a large regime of parameters, they are determined, not by renormalized spin
fluctuations, but by topological excitations. In this regime, the fluctuations are separable in their spatial and
temporal dependence andhave a spatial correlation lengthwhich is proportional to the logarithmof the temporal
correlation length, i.e., for some purposes, the effective dynamic exponent z ¼ ∞. The time dependence gives
ω=T scaling at criticality. The observed resistivity and entropy then follow. Several predictions to test the theory
are also given.
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The problem of antiferromagnetic (AFM) quantum-
critical fluctuations in itinerant fermions has been studied
extensively [1–5] by simple extensions of the theory of
classical critical fluctuations. This idea has been proven by
S.-S. Lee [6] to be uncontrolled in two dimensions. (The
theory is controlled for AFM fluctuations in 3D; the
measured fluctuation spectra and the properties calculated
[7] from it also agree well with the experiments.) Lee has
also proposed methods for expansion about three dimensions
for a problem with a one dimensional Fermi surface, as
well as a different expansion about a line in the spatial
dimension—Fermi surface dimension plane. Other proce-
dures [8–10] have also been proposed, each yielding differ-
ent results. While these methods (at least to linear order in
the expansion parameter) appear controlled, they do not give
the observed singular-Fermi-liquid properties. All these are
theories of criticality due to renormalized spin waves. Other
semiphenomenological ideas [11–13], with varying degrees
of justification have also been proposed. Imaginative ideas
based on string theory duality have also been advanced [14].
At least so far, there is no sense of a symmetry breaking
in such theories, which appears invariably in experiments
astride the region of singular Fermi-liquid properties.
The linear in T resistivity and the TlogT specific heat

and thermopower in the AFM quantum-critical region in
2D [15–17] are reminiscent of the properties in the similar
region in hole-doped cuprate superconductors. The quan-
tum critical point associated with the singular Fermi-liquid
properties in the hole-doped cuprates is obviously not of the
AFM order, which goes to 0 at dopings far from the regime
of such anomalous metallic properties [18]. A quite differ-
ent order parameter, which does not break translational
symmetry, was predicted [19] for which there is

experimental evidence in many different kinds of experi-
ments [20–23]. The fluctuations of such an order parameter
can be mapped to a dissipative quantum XY model with
fourfold anisotropy [24].
The observation of similar singular Fermi-liquid proper-

ties in the AFM quantum-critical region suggests an inves-
tigation to see if AFM fluctuations are also described by a
similar model. A generic model of itinerant fermions, which
have a commensurate or an incommensurate planar AFM
transition, or one which has an incommensurate uniaxial
transition, is shown here to transform canonically to a model
with a superconductive transition, which is described by a
dissipative quantum XY model. The fluctuations of the AFM
model near the AFM wave vector Q can be obtained from
the known fluctuations of the XY model in the long
wavelength limit. Fermions acquire the observed singular
properties through scattering such fluctuations. It is generally
agreed that a prerequisite for understanding superconduc-
tivity is understanding the normal state anomalies above Tc.
Canonical transformation.—Consider the following

Hamiltonian for fermions:

H ¼
X

hiji;σ¼↑;↓

tija
†
i;σaj;σ þ H:c:þ U

X
i

ðni↑ − 1=2Þ

× ðni↓ − 1=2Þ þ IzðSzi Þ2 − μni þ hSzi : ð1Þ
hiji sums over nearest neighbors on a bipartite two
dimensional lattice. U > 0 so that, for large enough U=t,
a Mott insulating state is expected with AFM correlations
or commensurate order at half filling when the chemical
potential μ ¼ 0. Beyond some deviation from half filling, a
metallic state is expected, with AFM correlations at low
enough temperatures. These correlations are, in general,
peaked at the incommensurate vectorsQ ¼ ðQ0 þ q0Þwith
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Q0:R0 ¼ π, where R0 s are the nearest neighbor vectors
and q0 depends on the deviation from half filling. A single
ion anisotropy term with coefficient Iz > 0 ensures that the
AFM correlations are stronger for planar spin correlations,
i.e., spin in the xy plane, and Iz < 0 ensures the same for
uniaxial correlations, i.e., spins along the z axis. Only
h ¼ 0 is considered in this Letter, but finite hmay be useful
in further work. No magnetic order is expected for large
enough deviation from half filling. So, there is a quantum
critical point as a function of doping. The Hamiltonian
of Eq. (1) may be paradigmatic of a general class of
models with AFM correlations, but specific details of the
Hamiltonian for the actual experimental systems need to
be examined to be certain.
The (canonical) transformations [25],

ai;↑ → eiζi ~ai;↑; a†i;↑ → e−iζi ~a†i;↑;

ai;↓ → ~a†i;↓e
iQ0:Riþiζi ; a†i;↓ → ~ai;↓e−iQ0:Ri−iζi ; ð2Þ

with

ζi ¼ −
1

2
q0 ·Ri; ð3Þ

transform the Hamiltonian of (1) to

~H ¼ − ~U
X

ð ~ni↑ − 1=2Þð ~ni↓ − 1=2Þ −
X
i

ð ~h ~Szi þ ~μniÞ

þ
X

hiji;ðα¼�Þ
~tije−iαðζi−ζjÞ ~a

†
i;σ ~aj;σ þ H:c: ð4Þ

Here, α ¼ � for σ ¼ ↑;↓, respectively, and

~t ¼ t; ~U ¼ U − 2Iz; ~h ¼ μ; ~μ ¼ h: ð5Þ

The transformed Hamiltonian is a model with on-site
attractive interactions, a Zeeman field related to the
deviation of the original model from half filling and a
spin-dependent phase factor [αðζi − ζjÞ, α ¼ ð�1Þ for
σ ¼ ð↑;↓Þ], on the link ði; jÞ related to the incommensurate
vector q0 or the deviation from half filling. As a result, the
Fermi surface of up and down spins are shifted in opposite
directions by �q0=2; thus, αðζi − ζjÞ is a spin-orbit field.
Corresponding to the transitions to planar AFM and
uniaxial AFM in model (1), model (4) has a superconduct-
ing ground state for small enough ~h for Iz > 0 and a charge
density wave for Iz < 0. Also, corresponding to a quantum
critical point in model (1) for μ ¼ μc with other parameters
fixed, there is a quantum critical point in model (4) for
~h ¼ ~hc, as will be clearer below.
Relation of spin correlations to superconducting

correlations.—With the canonical transformations, the
spin-raising (-lowering) operator H is related to the
Cooper pair creation (annihilation) operator in ~H, and Szi
is related to the density operator,

Sþi →eiQ:RiΨþ
i ; S−i →e−iQ:RiΨi; Szi → ~ni−1 ð6Þ

Ψþ
i ¼ ~aþi↑ ~a

þ
i↓; etc: ð7Þ

Define the response functions for two operators A and B
for a Hamiltonian H by

χHðABÞði; j; t − t0Þ ¼ −iθðt − t0Þh½AiðtÞ; Bjðt0Þ�iH: ð8Þ

Consider Iz < 0 so that χHðSzSzÞðQþ q;ωÞ are important.

They map to incommensurate charge density fluctuations at
the same momenta. Such fluctuations are described by the
fluctuations of an XY model [26]. This follows from the
fact that an incommensurate wave of charge (or z compo-
nent of magnetization) has in general an order parameter
A sinðQ ·Ri þ ϕÞ, where A is the amplitude. Any spatially
uniform value of ϕ has the same energy, just as the
phase-variable in a superfluid. Spatial variations in ϕ cost
an energy ∝ ρs∥j∇∥ϕj2 þ ρs⊥j∇⊥ϕj2, where ∇∥;⊥ refer to
variations parallel and perpendicular to Q. Also, the
energy can only depend periodically on the difference of
phase ðϕi − ϕjÞ between two points i and j on the lattice.
Therefore, the uniaxial incommensurate AFM fluctuations
are described by an XY model. The edge dislocations in
the incommensurate wave in 2D correspond to vortices in
2D superfluids. For the uniaxial case, unlike the case for
the planar case discussed below, the mapping of Eq. (2) is,
in fact, unnecessary.
Consider Iz > 0 so that the important fluctuations are

planar. These are the relevant fluctuations for the Fe-based
compounds and for some heavy fermions. It follows, using
the definition (8) that knowledge of any response function of
model (1) also gives a response function of (4) and vice
versa. The two are related by the (2). In particular, the planar
spin-response function in the model of Eq. (1) is identical to
the Cooper pair response function for the model of Eq. (4)

χHðSþS−ÞðQþ q;ωÞ≡ χ ~H
ðΨþΨÞðq;ωÞ: ð9Þ

The identity (9) asserts that if the correlation function at the
left diverges at q ¼ 0 for some parameters, signifying an
AFM transition, the correlation function at the right also
diverges at q ¼ 0 for parameters related to each other by (5),
signifying a uniform s-wave superconducting transition.
Moreover, the planar AFM correlation at small q around
Q at any ω in model (1) may be obtained exactly from the
superconducting correlations at q at the sameω in model (4).
Either model may have other phase transitions, which would
also bear correspondence. They are not relevant to the
problem addressed here which has only to do with finding
the correlation functions for the paramagnetic to AFM
transition in model (1).
The relation between the correlation functions does not

say anything at all about the value of the parameters where
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the critical point occurs. It is, however, worthwhile to
discuss the physical reason for the transition in the super-
conducting model with a Zeeman field. The Zeeman field
in model (4) makes the Fermi sphere for one spin bigger
than the other and the spin-orbit field displaces them with
respect to each other by 2q0. The spin-orbit field, as well as
the Zeeman field, is taken into account in the one-particle
spectra by the condition of equal chemical potential, by
introducing spin-dependent Fermi vectors

pF ¼ p0
F þ ðδpFÞσ3; δpF ≡ q0 þ

gμB ~h
jvFj

; ð10Þ

for q0=p0
F ≪ 1. Time-reversal symmetry is preserved by

the shift q0σ3, while it is broken by the shift proportional to
~h. The latter leads to a displacement in momentum of the up
and down Fermi surfaces. Therefore, the usual logarithmic
singularity for s-wave Cooper pairing at zero total momen-
tum (q ¼ 0), due to attractive interactions, is cut off due to
the spin-splitting energy gμB ~h. There is no transition even at
T → 0 for ~h larger than a critical field ~hc. This corresponds
to the AFM quantum-critical point in the repulsiveU model
at a critical value μc connected to ~hc by (5).
The approach to finding the quantum-critical correlations

of the itinerant AFM in 2D, by using Eq. (9), is worthwhile
because the quantum-critical correlations of the supercon-
ductor in 2D are known rather accurately [27]. Near the
phase transitions of model (4), we may, using techniques
such as the Hubbard-Stratonovich transformation, write it in
terms of a Hamiltonian for its collective fluctuations Hcoll,
for the fermions HF and for the interaction between the
fermions and the collective fluctuations Hint.

H ¼ HF þHcoll þHint: ð11Þ
The model for collective critical fluctuations in a super-
conductor may be expressed in terms of the pair-field
operators Ψ, which are products of a pair of time-reversed
fermions. In 2D, the amplitude fluctuations are irrelevant and
the phase fluctuations determine the critical properties. The
critical fluctuations are, then, those for an XY model for a
field Ψðr; τÞ≡ jΨjeiθðr;τÞ, with jΨj weakly enough varying
that it may be kept fixed [28,29]. The action for Hcoll for the
2D-XY model, with a fourfold anisotropy term and including
dissipation, is expressed in terms of the phase θiðτÞ on a
lattice of sites Ri as,

Scoll¼−
Z

β

0

dτ
X
i

1

2Ec

�
dθiðτÞ
dτ

�
2

þK0

X
jðiÞ

cos½θiðτÞ−θjðτÞ�þh4cos4θiðτÞþSdiss: ð12Þ

The relationship of the parameters in (12) and (4) is hard to
derive microscopically, except for weak coupling or for
strong coupling, jUj=t ≪ 1, or ≫ 1, respectively. K is
related to the superfluid density which decreases as the

Zeeman field ~h increases, and Ec to the compressibility. h4
reflects the anisotropy of the kinetic energy parameter tij.
The relations locate the quantum-critical point, but they are
unnecessary for finding the correlation functions around the
critical point.
Sdiss is the dissipative term in the action. It is necessary to

show that, under the transformations (6), the form of the
dissipation also goes from that in one model to that of the
other. The dissipation used [2,4] in the itinerant AFM on
symmetry grounds is of the form

Sdiss ¼
X
ω;q

iαjω∥SðQþ q;ωÞj2: ð13Þ

This arises from the decay of collective AFM spin
fluctuations into incoherent particle-hole pairs with spin
1. In the problem of quantum criticality of the XY model
[29], the nature of dissipation has been chosen to be that of
the Caldeira-Leggett form [30], which is due to the decay
of collective super-current J to incoherent fermion cur-
rent. The current J is proportional to the gradient of the
phase, ∇θ, so that the Caldera-Leggett (CL) dissipation
for small q is,

SCLdiss ¼
X
q;ω

iα0jωjq2jθðq;ωÞj2: ð14Þ

Here, α0 ¼ ð1=4π2ÞRQ=Rs; RQ is the quantum of resistance
for Cooper pairs, equal to h=4e2 and Rs is the resistance
per square of the normal state [29]. Under the transforma-
tions (14), the supercurrent operator Jij ∝ ImðΨþ

i ΨjÞ trans-
forms to ImðSþi S−j eiQ·RijÞ. On Fourier transformation, this
becomes jQþ qj2ImSþS−ðQþ q;ωÞ. q may be dropped
in jQþ qj2 because of the large fixed jQj. In 2D, only the
imaginary part of the order parameter correlations are
critical. It follows that the Caldera-Leggett dissipation
(14), leads on using the transformations (6), to the usual
dissipation of the itinerant AFM model (13) with
α ¼ α0jQj2. Similar proportionality for dissipation for the
phase fluctuations of the incommensurate uniaxial model to
dissipation in the XY model also follows.
The dissipative quantum 2D-XY model has a rich phase

diagram [27,31,32] at T ¼ 0. At α ¼ 0, it has a transition
of the 3D-XY class for Ec=K0 ≲ 12 with the dynamical
critical exponent z ¼ 1. As α increases, the transition
continues to be in the same class with the critical ratio
of Ec=K0 increasing slightly, till about α ≈ 0.01, beyond
which, it changes to the z ¼ ∞, with the critical value of
Ec=K0 sharply increasing with the critical value of α. The
model also has some interesting crossovers to 2D critical
behavior of the Kosterlitz-Thouless kind and, from that,
to the 3D ordered state as a function of T2=ðK0EcÞ. Here,
we focus on the T ¼ 0 quantum critical response at the
disordered to the 3D ordered phase transition with the
dynamical critical exponent z → ∞, as it appears to be
relevant to the experiments. It is important to note that this
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occupies a substantial part of the phase diagram. This may
be seen from the fact that α is proportional to the inverse 2D
resistivity and its lower limit is bounded by the maximum
resistivity possible for a disordered 2D problem to be
considered itinerant. The z ¼ 1 transition only occurs for
the very disordered problem with resistance close to the
unitarity limit beyond which the model of itinerant fermions
is not valid. The decrease of the resistivity of the material
and/or increase in ratio of the Josephson coupling to the
charging energy, K0=Ec drives the transition with z → ∞.
Given the relationship (9) and the results in Refs. [24,27],

the correlation function χHSþS−ðr; τÞ for the AFM, in the
quantum-critical regime, is obtained from χ ~H

ΨþΨ− ∝
heiθðr;τÞe−iθð0;0Þi for the XY model

χHSþS−ðr; τÞ ¼ χ0
1

τ
e−

ffiffiffiffiffiffi
τ=ξτ

p
ln

�
rc
r

�
e−r=ξreiQ:r; ð15Þ

ξτ ¼ τce
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pc=pc−p

p
; ξr=rc ≈ lnðξτ=τcÞ: ð16Þ

Here, τ is the imaginary time, periodic in 1=ð2πkBTÞ, which
has a lower cutoff iτc ≈ ðK0=EcÞ−1=2. p is the set of
parameters, for example α and K0=Ec, which drive the
transition and determine the critical line pc.
There are several remarkable features in these results.

The correlation function is separable in space and time; the
spatial correlation length diverges only logarithmically
with the temporal correlation, i.e., the effective dynamical
exponent z → ∞; the temporal correlation at the critical
point p → pc is 1=τ, which gives an absorptive part as a
function of ω and T ∝ tanhðω=2TÞ, with an upper cutoff of
order ωc ¼ ð−iτcÞ−1. This simple scaling persists over an
exponentially large range in the (T; ðp − pcÞ) plane.
To compare with experiments, it is more useful to Fourier

transform the correlation function to momentum and
frequency variables. The Fourier transform to frequency
space can be reduced to doing an integral which can only be
evaluated numerically. The results and the fits to it to a
functional form are given in Ref. [27]. We quote this result

Imχðω;qÞ¼−χ0 tanh
�

ω

2kBT

�
F lðTξτÞFc

�
ω

ωc

�

×
1

π

1

jQ−qj2þκ2k
;

F l

�
T
κω

�
≈

1

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κω=2πT

p Þ2 ; forω=T≪1;

≈
1

4
ð1þ3e−

ffiffiffiffiffiffiffi
κω=T

p Þ forωc=T≫ω=T≫1: ð17Þ

κk ¼ ξ−1r , and κω ¼ ξ−1τ is the low frequency cutoff which
increases extremely slowly [see Eq. (15)] from 0 on deviation
from criticality. Fcðω=ωcÞ is a cutoff function, Fcð0Þ ¼ 1,
limðω ≫ ωcÞFcðω=ωcÞ ¼ 0. Note that Imχðω;qÞ is a
separable function of ω and q.

Since, following Caldeira-Leggett, Eqs. (13) are derived by
eliminating the coupling of the collective currents to fermion
currents, it follows that α ¼ ImhjjiFðq ¼ 0;ωÞ ¼ jωjσðωÞ.
hjjiFðq ¼ 0;ωÞ is the fermion current-current correlation in
the long wavelength limit, so that σðωÞ is their conductivity.
To test the consistency of the theory, we need to look at only
the limit ω → 0, of σð0Þ ¼ ρ−1, where ρ is the resistivity. So,
it is enough to look for the renormalization of the impurity
contribution ρðω; TÞ to the resistivity. For impurities coupling
to a conserved quantity, for example the density, there is no
(singular) renormalization of the impurity resistivity [33].
Experimental consequences.—The results obtained in this

Letter are for a very simple model of itinerant antiferromag-
netism. The final results for the correlation function are
also valid for incommensurate 2D Ising antiferromagnets
because, as discussed, their critical properties are also
determined by an XY model. In heavy fermions, as well
as in the Fe-based compounds, the multiband nature of the
problem and the diverse nature of the renormalization for the
different orbitals with different interactions are essential for
a complete description. One may ask, however, if universal
features may govern the phenomena so that the present
treatment gives some essential results. The most direct test of
the applicability of the theory is a measurement of χðω; qÞ.
Most critical properties can be derived once this is known.
There is only one measurement of the fluctuation

spectrum at several ðq;ω; TÞ near an AFM quantum-critical
point in a quasi-2D heavy-fermion system—CeCu6−xAux
[34]. Within the limited accuracy of the data, taken by the
essential but difficult technique of inelastic neutron scatter-
ing, the results are consistent with Eq. (17) [35], both for
the ω=T dependence as well as the separability of the ω
and q dependence. In the same paper [35], a few results
obtained [36] for the compound BaFe1.85Co0.15As2 are also
shown to be consistent with the results here. In neither case
are the measurements done at various dopings near the
critical point to study the variations with the correlation
lengths. We urge more detailed experimental study of the
correlation functions. It is amusing to note that the measure-
ments on the very under-doped cuprate compounds, in the
region where the AFM correlation lengths are more than
about ten lattice constants, showa frequencyand temperature
independent correlation length about the AFM Bragg-
vectors, and a tanhðω=2TÞ scaling in Imχðq;ωÞ [18].
Earlier [37,38], one relied on the assumed nonsingular

nature of the spatial correlations and a momentum inde-
pendent coupling vertex g0 to fermions, to predict that
the single-particle self-energy of the fermions, due to the
interaction term Hint is

Σðk;ωÞ ¼ g20χ0Nð0Þ
�
ω ln

�
ωc

x

�
− i

π

2
x

�
; ð18Þ

for x ≈maxðjωj; TÞ≲ ωc. Nð0Þ is the density of states near
the Fermi energy. For x≳ ωc, the imaginary part goes to a
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constant. The Monte Carlo calculations have now found that
the spatial correlation length also diverges, albeit only as a
logarithm of the temporal correlation length, as given by
Eq. (17). Now, we also have a theory of the vertex gðk;k0Þ
[39], with which the fluctuations at momentum ðk − k0Þ
scatter fermions from k to k0. Including both these changes,
the result for the self-energy do not change in any essential
way from that given by (18), See Supplemental Material
[40]. Given the momentum-independent self-energy, there
is no backward scattering vertex correction for current
transport. This was used in [[43]] to derive the resistivity
proportional to T in a solution of the Boltzmann equation
including the full collision operator. The same result was
obtained [44] more formally by deriving the density-density
correlation for a marginal Fermi liquid of the conserving
form with a diffusion constant proportional to ImΣ. Using
the relation between the density-density and the current-
current correlations, the result for the resistivity ∝ T is again
obtained. Given such a self-energy, one can turn to the exact
expression for the entropy in terms of the single-particle
Green’s function to find that, using (18), the specific heat has
a singular contribution ∝ T lnT, except for very small T.
Both the marginal Fermi-liquid energy-temperature

dependence and the momentum-independence in Eq. (18)
are important untested predictions in antiferromagnetic
quantum critical points. In multiband compounds, such as
the Fe-based high temperature superconductors, the coef-
ficient of proportionality g2Nð0Þ may vary between bands
and be ambiguous in regions where the bands come close
together. So, it is best to measure the self-energy at different
angles across the various Fermi surfaces for low energies.
These results are quite unlike the renormalized spin-wave
theories, which have anomalous self-energies only at the
“hot-points,” i.e., those where the Fermi surface spans Q.
The results for the self-energy are much stronger than the
linearity in the temperature dependence of the resistivity,
which follows from it. As mentioned above, the linear in T
resistivity and a T lnT contribution to entropy in the
quantum fluctuation regime of quasi-2D antiferromagnets
appear to be universally observed. Besides the linearity in T
of the resistivity, the change in resistivity in a magnetic field
of the form fðjBj=TÞ, as observed [17], is given by the
theory because the Hamiltonian (energy) changes linearly
with jHj through the Zeeman term and there is no linear
coupling of the field to the order parameter. It also follows
[37], from Eq. (17), that the nuclear relaxation rate (for
nuclei at which the projection of the fluctuation spectra is
finite) should have a nearly constant contribution as a
function of temperature, unlike the Korringa law T−1

1 ∝ T
in Fermi liquids. Evidence for such a behavior has also been
found [45] in the Fe compounds near quantum criticality.
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