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We show that two-terminal transport can measure the Luttinger liquid (LL) parameterK, in helical LLs at
the edges of two-dimensional topological insulators (TIs) with Rashba spin-orbit coupling. We consider a
Coulomb drag geometry with two coplanar TIs and short-ranged spin-flip interedge scattering. Current
injected into one edge loop induces circulation in the second, which floats without leads. In the
low-temperature (T → 0) perfect drag regime, the conductance is ðe2=hÞð2K þ 1Þ=ðK þ 1Þ. At higher T,
we predict a conductivity ∼T−4Kþ3. The conductivity for a single edge is also computed.
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The edge states that encircle two-dimensional (2D)
topological insulators (TIs) realize a novel electronic helical
Luttinger liquid (HLL) phase [1–3]. Distinct from an
ordinary one-dimensional (1D) quantum wire and from a
quantum Hall edge, a helical edge consists of two counter-
propagating modes forming a Kramers pair. The left- and
right-moving channels interact through Coulomb repulsion,
but time-reversal symmetry protects the edge from the
opening of a gap and from Anderson localization due to
impurities. The combination of topological protection and
electron correlations implies that a TI edge is an ideal
Luttinger liquid at low temperatures [4,5]. Experimental
evidence for helical edge states in HgTe [6] and InAs=GaSb
[7] includes a quantized conductance G≃ 2e2=h [7,8].
In the absence of electrical contacts and magnetic fields,

a HLL forms a closed, unbreakable loop. This topology of
the edge has so far received little attention. In this Letter, we
propose a TI device geometry in which edge loops rotate as
interlocking “gears” through Coulomb drag [9–13]. Our
main result is that the strength of electron correlations
encoded in the Luttinger parameter can be directly obtained
in such a device using a two-terminal dc conductance
measurement.
Correlations are generically strong in 1D electron fluids,

because two particles cannot exchange positions without
scattering or tunneling. These correlations are encoded in
the Luttinger parameter K [14]. Measuring K in a non-
topological 1D electronic system (or “wire”) is possible but
delicate. For instance, the zero-temperature (T ¼ 0) dc
transport through a perfectly clean wire gives a quantized
conductance independent of K [15–17]. In a long wire,
disorder tends to induce Anderson insulating behavior. At
temperatures T ≳ ℏvkF=kB, inelastic scattering due to
irrelevant umklapp interactions gives a conductivity that
depends on T through a power law [18]; here v and kF,
respectively, denote the charge velocity and Fermi wave
vector. The disorder-induced scattering may lead to a

qualitatively similar effect [19]. The temperature exponent
in conductance can reveal the Luttinger parameter K, but a
large temperature range is needed to fit the data. The
tunneling zero bias anomaly is also predicted to encode K,
but measurements often contain contributions from other
mechanisms [20].
In the simplest version of HLL physics that realizes the

quantum spin Hall effect [4,5,21,22], the z component of
spin is assumed to be conserved in a TI. As a result, the
edge electrons carry well-defined Sz currents. When
Rashba spin-orbit coupling (SOC) is present [1] (generi-
cally expected in the absence of inversion symmetry), Sz
symmetry is sabotaged. New spin-flip interactions [23–25]
are then allowed on TI edges.
We show that the Luttinger parameter enters the con-

ductance in a Coulomb drag geometry consisting of two
coplanar TI regions with Rashba SOC. Over a segment of
length L, proximate HLL edge states are separated by a gap
narrow enough to allow short-ranged Coulomb scattering
but wide enough to prevent tunneling. In Fig. 1, we
consider two identical helical edges. Current I1 is injected
by external leads. Short-ranged spin-flip scattering [23]
between edges induces a current I2 in the right TI edge
loop, which floats without leads. At zero temperature, the
two proximate edge segments develop a locking state of
perfect drag (I1 ¼ I2) [10,12] for an infinitely long inter-
acting region L → ∞. An additional current I10 flows in
parallel between the contacts. The zero-temperature two-
terminal conductance G ¼ ðI1 þ I10Þ=V is

G ¼ e2

h
½1þ ð1þ 1=KÞ−1� ¼ e2

h

�
2K þ 1

K þ 1

�
; ð1Þ

where ð1þ 1=KÞ is the dimensionless resistance of the
locked edges, as explained below. For a finite locking
length L ≫ ξ and at temperatures T satisfying ℏv=L≲
kBT ≪ Δ [11], Eq. (1) holds up to exponentially small
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corrections in L=ξ and Δ=kBT [10–12]. Here ξ≡ ℏv=Δ is
the length scale associated to the gapped “antilocking”
mode with I1 ¼ −I2; Δ is the energy gap.
We also discuss dissipative finite-temperature transport

in this geometry. In contrast to the usual setup for Coulomb
drag [9,13], the system is naturally characterized in terms of
conductances or conductivities:

�
I1
I2

�
¼

�
G11 G12

G21 G22

��
V1

V2

�
; Gij ¼ σij=L;

where the labels 1 and 2 indicate the active and passive
systems, respectively. For our TI edges, the passive system
is a closed HLL loop with V2 ¼ 0, I1 ¼ σ11V1=L, and
I2 ¼ σ21V1=L. We compute the intraedge and transcon-
ductivities using the Kubo formula and bosonization,
employing the effective potential formalism [26,27].
Both σ11 and σ21 give T−4Kþ3 (T−4Kþ2) behavior in the
absence (presence) of disorder, above the locking
transition.
Finally, we compute the conductivity of a single edge

due to the least irrelevant symmetry-allowed (one-particle
umklapp) interaction term. We find asymptotic T−2K−1

(T−2K−2) behavior in the high- (low-) T limits, in the
presence of disorder, consistent with Ref. [28], and we also

obtain the full result for the clean limit. Power-law scaling
of conductance as a function of temperature and bias
voltage that may be attributable to Luttinger liquid physics
was recently observed in InAs=GaSb quantum spin Hall
devices [29].
Model.—The edge states of a 2D TI can be expressed in

terms of right (R) and left (L) mover fermion fields. The
kinetic term is

Ĥ0 ¼ −iℏvF
Z

dx½R†ðxÞ∂xRðxÞ − L†ðxÞ∂xLðxÞ�; ð2Þ

where vF is the Fermi velocity of the edge band. Time-
reversal symmetry is encoded by RðxÞ → LðxÞ, LðxÞ →
−RðxÞ, and i → −i. Left and right movers interact via
intraedge Coulomb repulsion.
We focus on the coplanar geometry in Fig. 1 and

consider the backscattering components of the interedge
Coulomb interaction. An additional interedge Luttinger
interaction does not modify our results for the locking
regime if the distal portion of edge loop 2 is much longer
than the interacting segment of length L; otherwise, the
parameter K in Eq. (1) encodes a combination of inter- and
intraedge correlations. In the presence of Rashba SOC, the
following interedge backscattering terms are allowed by
symmetry [23]:

Ĥ− ¼ U−

Z
dx½ei2ðkF1−kF2ÞxL†

1R1R
†
2L2 þ H:c:�; ð3Þ

Ĥþ ¼ Uþ

Z
dx½ei2ðkF1þkF2ÞxL†

1R1L
†
2R2 þ H:c:�; ð4Þ

where kF1 (kF2) indicates the Fermi momentum in the first
(second) edge. These are defined relative to an edge Dirac
point, which is a commensurate (time-reversal invariant)
momentum [2]. The U− interaction describes normal
backscattering, while Uþ is a two-particle umklapp inter-
action. Additional one-particle umklapp interaction terms
are also allowed:

ĤU ¼
X
a¼1;2

Ua

Z
dx½e−i2kFaxR†

aLaR
†
āRā

− ei2kFaxL†
aRaL

†
āLā þ H:c:�; ð5Þ

where a is the index of the edge, 1̄ ¼ 2, and 2̄ ¼ 1. It is
worth mentioning that all of these interactions are disal-
lowed in the presence of Sz conservation (in each
edge) [23,30].
For simplicity, we assume the two HLLs are identical, so

that kF1 ¼ kF2 ≡ kF and U1 ¼ U2 ≡U. The dominant
interedge interaction at T ¼ 0 is the nonumklapp back-
scattering Ĥ−; the others are irrelevant at long wavelengths
for kF ≠ 0 [14]. In order to include Luttinger liquid effects,
we use bosonization [14,31]. The individual edge loop
HLLs are described by

FIG. 1 (color online). Using helical quantum edge gears to
measure the Luttinger parameter. We consider Z2 TI edge states
in two adjacent topological regions. The blue and red arrows
indicate the propagation directions of edge electrons with
opposite helicities. The left TI is connected to external leads;
I1 and I10 denote the currents of the edges connected to these. The
right TI edge floats as an electrically isolated closed loop. Rashba
spin-orbit coupling [1] enables Coulomb drag due to short-ranged
spin-flip scattering [23] between the adjacent edges. This induces
a current I2 that circulates in the right edge. In the case of
identical TIs with an interacting edge region of size L → ∞, at
zero temperature strong backscattering “locks” the currents
I1 ¼ I2, associated to perfect drag [10,12]. We then predict
that the zero-temperature conductance is G ¼ ðI1 þ I10Þ=V ¼
ðe2=hÞð2K þ 1Þ=ðK þ 1Þ, where K is the Luttinger parameter. In
a real system of finite length L ≫ ξ and at temperatures T
satisfying ℏv=L ≲ kBT ≪ Δ [11] with ξ ¼ ℏv=Δ and Δ the Mott
gap of the antisymmetric mode, the result for G holds up to terms
exponentially small in L=ξ and Δ=kBT [10–12]. Here v is the
charge velocity.
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Ĥb;0 ¼
ℏv
2

X
a¼1;2

Z
dx

�
Kð∂xϕaÞ2 þ

1

K
ð∂xθaÞ2

�
; ð6Þ

where K is the Luttinger parameter and v is the charge
velocity. K ¼ 1 and v ¼ vF corresponds to the free fermion
limit. The density (n) and current (I) can be expressed in
terms of the axial fields as na ¼ ∂xθa=

ffiffiffi
π

p
and

Ia ¼ −∂tθa=
ffiffiffi
π

p
, respectively. The interedge interaction

Ĥ− is bosonized to

Ĥb;− ¼ U−

2π2α2

Z
dx cos ½

ffiffiffiffiffiffi
4π

p
ðθ1 − θ2Þ�; ð7Þ

where α is an ultraviolet length scale.
Perfect current drag and dc conductance.—At zero

temperature, two infinite HLLs form an interedge locking
state [10,12] due to the two-particle backscattering term in
Eq. (7). The locking state is characterized by
θ1ðt; xÞ ¼ θ2ðt; xÞ þ cm, where cm ¼ ðmþ 1=2Þ ffiffiffi

π
p

is a
constant andm ∈ Z. This state exhibits perfect current drag
[10], I1 ¼ I2 in Fig. 1. The conductance of the locked
edges (both carrying current I1) is I1=V ¼
ðe2=hÞ½K=ðK þ 1Þ�. This can be understood as the series
resistor combination of a spinless LL connected to leads
with resistance h=e2 [15–17] and one with periodic
boundary conditions and resistance h=Ke2 [32,33]. An
explicit Green’s function calculation confirms this result
[34], which is also independent of disorder. Equation (1) is
obtained by adding the parallel I10 edge channel.
For a finite interacting region of length L and nonzero

temperature T, we require that L ≫ ξ and kBT ≪ Δ.
Occasional phase slips between the drive and slave circuits
give rise to corrections that are exponentially small in L=ξ
and Δ=kBT [10–12]. For L ¼ 1 μm in InAs=GaSb with
v ∼ vF ¼ 3 × 104 m=s, this gives a lower bound forΔ of the
order of ℏv=L ¼ 0.02 meV. We assume that kBT is larger
than the latter to avoid coherent instanton effects [11]. By
comparison, the bulk minigap is of the order of 4 meV [7].
The Mott gap takes the form [14] Δ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KU−ℏv

p
=α. Using

α ¼ 1 nm givesΔ ∼ 20 meV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðU−=ℏvÞ

p
. The interaction

strength U− is obtained from the interedge Coulomb
potential, mediated by matrix elements determined by the
Rashba SOC in eachTI (since it vanishes in its absence). The
result will depend on microscopic details that we do not
analyze here.
Finite-temperature corrections.—Above a crossover

temperature T� ∼ Δ=kB [12], inelastic electron-electron
collisions due to the interedge interactions in Eqs. (3)–(5)
can be treated perturbatively. In addition, we consider
intraedge collisions due to electron-electron interactions
[Eq. (14), below] and forward-scattering potential disorder.
Ordinary backscattering (random mass) disorder is forbid-
den by time-reversal symmetry. We ignore irrelevant back-
scattering disorder terms with extra derivatives that are not

expected to impact the conductivity in isolation [28] and
which give subleading corrections in combination with
interactions. Forward-scattering disorder is encoded in
Ĥimp ¼

P
a¼1;2

R
dx × ηaðxÞnaðxÞ, where ηaðxÞ is a ran-

dom potential obeying ηaðxÞ ¼ 0 and ηaðxÞηbðx0Þ ¼
gηδa;bδðx − x0Þ. The … denotes disorder averaging, while
gη characterizes the disorder strength.
To compute the conductivity, we evaluate interaction

corrections to the inverse boson propagator via the effective
potential method [26,27]. We use replicas to average over
disorder. The retarded boson correlation function is

½ĜðRÞðω; kÞ�−1ab ¼ ½ĜðRÞðω; kÞ�−1ab − ½Π̂ðRÞðω; kÞ�ab; ð8Þ

where a; b ∈ f1; 2g indicate the edges. The noninteracting
propagator is ĜðRÞðω; kÞ, while Π̂ðRÞ denotes the self-
energy describing the interaction corrections.
Equation (8) is a matrix Dyson equation. At second order
in the coupling constants, Π̂ðRÞ contains an imaginary part
that determines the scattering rates; the real part does not
contribute to dc conductivity. In the limit ω → 0 with
k ¼ 0,

Im½ΠðRÞ
ab � ¼ −2ωΞab þ Oðω2Þ; ð9Þ

where Ξab is the “rate” (inverse mean free path) associated
to Πab. The components are Ξ11 ¼ Ξ22 ¼ 1

2
Ξþ þ 1

2
Ξ− þ

ΞU þ ΞW and Ξ12 ¼ Ξ21 ¼ 1
2
Ξþ − 1

2
Ξ−. ΞU is due to the

one-particle backscattering term ĤU. Ξþ and Ξ− corre-
spond to the two-particle backscattering interactions Ĥþ
and Ĥ−, respectively. ΞW is due to intraedge inelastic
electron-electron collisions, ĤW in Eq. (14). ΞU and ΞW
affect only the diagonal elements of the self-energy, while
Ξþ and Ξ− contribute to all of the components.
Temperature dependences of all the scattering rates are

obtained analytically. For kBT ≫ maxðgη=ℏv;ℏvkFÞ,
ΞU ∝ T2K−1, ΞW ∝ T2Kþ1, and Ξ� ∝ T4K−3. In the pres-
ence of disorder and for kBT ≪ gη=ℏv, ΞU ∝ T2K ,
ΞW ∝ T2Kþ2, and Ξ� ∝ T4K−2. The additional power of
T comes from disorder smearing of kF [35]. Full crossovers
with and without disorder are determined by the explicit
forms of ΞU;W;� provided in Ref. [34].
The dc conductivity can be obtained through Kubo

formula [36]. The intraedge dc conductivity is

σ11 ¼ −
1

π

e2

ℏ
lim
ω→0

Im½ωGðRÞ
11 ðω; kÞ�

¼ e2

2h

�
1

Ξþ þ ΞU þ ΞW
þ 1

Ξ− þ ΞU þ ΞW

�
: ð10Þ

This expression is very different from the conductivity of
an isolated edge, discussed below. Both intraedge and
interedge interactions contribute to Eq. (10), but the
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intraedge contribution ΞW is subleading comparing to
the interedge rates. The finite-temperature behavior for
σ11 is summarized as follows. For clean edges and
kBT ≫ ℏvkF,

σ11 ∼
�
T−4Kþ3; for K ≤ 1;

T−2Kþ1; for K > 1:
ð11Þ

With smooth disorder and kBT ≪ gη=ℏv,

σ11 ∼
�
T−4Kþ2; for K ≤ 1;

T−2K; for K > 1:
ð12Þ

K ≤ 1 (repulsive interactions) is the physical situation.
The transconductivity is

σ21 ¼
e2

2h

�
1

Ξþ þ ΞU þ ΞW
−

1

Ξ− þ ΞU þ ΞW

�
: ð13Þ

This can be measured by shorting the distal part of passive
edge loop with an ideal (zero input impedance) current
meter. The leading temperature dependence of the drag
conductivity is the same as the intraedge conductivity. In the
usual case, one measures instead the drag resistivity [9,13].
Here this evaluates to ρD ¼ −ρ12 ¼ ðh=2e2Þ½Ξ− − Ξþ�,
independent of the interedge U and intraedge W inter-
actions. In the case of clean identical edges, a positive drag
resistivity with leading T4K−3 behavior is obtained. This is
the same result found previously for spinless Luttinger
liquids [11,12] and TI edgeswith small magnetic fields [30].
Single edge.—Finally, we consider dc conductivity of a

single edge in isolation, in the presence of Rashba SOC.
The least irrelevant intraedge electron-electron interaction
term allowed by time-reversal symmetry that can give a
finite transport lifetime is

ĤW ¼W
Z

dx∶fei2kFxL†ðxÞRðxÞR†ðxÞ½−i∂xRðxÞ�

þe−i2kFxR†ðxÞLðxÞL†ðxÞ½−i∂xLðxÞ�þH:c:g∶; ð14Þ

where ∶O∶ denotes the normal ordering of O. This is a
one-particle spin-flip umklapp term. Similar one-particle
backscattering interactions appear in Refs. [24,25,28], but
the full temperature dependence of the dc conductivity was
not determined. The interaction correction due to Eq. (14)
can be described by a self-energy with imaginary part

Im½ΠðRÞ
W ðω;kÞ�¼−2ωΞWþOðω2Þ, when k¼0 and ω → 0.

We find that

ΞW ¼
~W2α2K

ðℏvÞ2l2Kþ1
T

22Kπ2Kþ3KΓ½−K − 3�
Γ½K þ 2�

×
Z

∞

−∞
dy

�
γ=π

ðy − kFlT
2π Þ2 þ γ2

þ ðkF → −kFÞ
�

×
sin ðπKÞ

cosh ð2πyÞ − cos ðπKÞ
����Γ½

4þK
2

þ iy�
Γ½2−K

2
þ iy�

����
2

; ð15Þ

where ~W ¼ W=ðπ3=2αÞ and lT ≡ ℏv=kBT denotes the
thermal de Broglie wavelength. The disorder is encoded
in γ ≡ lTðK=ℏvÞ2gη=2π. The dc conductivity is σdc ¼
ðe2=hÞð1=ΞWÞ. At zero temperature where the HLL exhib-
its ballistic transport, σdc diverges.
For a clean noninteracting edge (K ¼ 1 and v ¼ vF), the

conductivity reduces to

σdc ¼
e2

h
ðℏvÞ2l3T
W2π3

6½cosh ðkFlTÞ þ 1�
½ðkFlT

2π Þ4 þ 5
2
ðkFlT
2π Þ2 þ 9

16
� : ð16Þ

At high temperatures kFlT ≫ 1, this is proportional to T−3;
in the opposite limit, the umklapp scattering is thermally
activated, giving σdc ∼ T exp ðkFlTÞ. Luttinger interactions
modify the high-temperature behavior to T−2K−1, while
disorder leads to σdc ∼ T−2K−2 for lT ≫ ðℏvÞ2g−1η , again
due to smearing of the Fermi momentum [35]. The
disordered result is consistent with earlier predictions
[24,25,28]. The T−2K−1 behavior is the most important
temperature dependence in the clean edge due to the
intraedge interactions, in the presence of Rashba SOC.
The responsible interaction term in Eq. (14) will be
generated by renormalization irrespective of whether it
arises in a particular microscopic model.
Summary and discussion.—In this work, we have shown

that low-temperature edge state transport measurements for
two proximate HLLs can quantify the value of the Luttinger
parameter in the presence of spin-flip interedge electron-
electron scattering. The latter is enabled by Rashba SOC
within each TI, as can arise in InAs=GaSb. In contrast to the
usual setup for Coulomb drag, the passive circuit floats
without leads and provides a much stronger source of
scattering for the active circuit edge than intraedge inter-
actions, which are negligible at low temperature. Because
of the topological protection, this result is immune to
disorder but receives exponentially small corrections for a
long, but finite interacting region.
In the same device geometry, both the intraedge con-

ductivity and the transconductivity show the same leading
temperature dependence for T above the crossover scale to
the low-temperature locking regime. Thus, two-terminal
conductivity gives an alternative route to detect Coulomb
drag physics. We have also computed the conductivity
correction due to the least irrelevant symmetry-allowed
interaction in a given edge. This gives T−2K−1 temperature
dependence for a clean edge.
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We close with some observations and avenues for future
work. In general, negative drag is possible when
jkF1 − kF2j≫ jkF1 þ kF2j. Equation (4) instead of Eq. (3)
dominates the interedge interactions at low temperature in
this case. For two almost identical edges but kF1 ¼ −kF2, a
perfect antiparallel current locking can occur; the two-
terminal conductance is still given by Eq. (1) in the T → 0
limit. The finite-temperature behavior will be qualitative
the same as the parallel drag situation. The generic kinetic
theory of Coulomb drag between helical edge states, that
also includes the forward-scattering long-ranged compo-
nent of the Coulomb interaction, is an important topic for
future work [37]. Understanding how a HLL edge state
thermalizes via the various scattering mechanisms has
crucial implications for nonequilibrium spectroscopy
[38,39]. It will also be interesting to study the noise [40]
for the two-helical-edge setup described here.

Y.-Z. C. and M. S. F. thank R.-R. Du, L. Du, D. Natelson,
and A. Nevidomskyy for useful discussions. A. L. thanks
N. Kainaris, I. Gornyi, and D. Polyakov for multiple
important discussions and ongoing collaboration on a
related problem. A. L. and M. S. F. acknowledge the
hospitality of the Spin Phenomena Interdisciplinary
Center (SPICE), where this work was completed. Y.-Z.
C. and M. S. F. acknowledge funding from the Welch
Foundation under Grant No. C-1809 and from an Alfred
P. Sloan Research Fellowship (No. BR2014-035). Y.-Z. C.
also acknowledges hospitality of the Michigan State
University. A. L. acknowledges funding from NSF
Grants No. DMR-1401908 and No. ECCS-1407875.

*yc26@rice.edu
[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[4] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
[5] C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett.

96, 106401 (2006).
[6] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[7] I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107,
136603 (2011).

[8] A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp,
J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325,
294 (2009).

[9] A. G. Rojo, J. Phys. Condens. Matter 11, R31 (1999).
[10] Y. V. Nazarov and D. V. Averin, Phys. Rev. Lett. 81, 653

(1998).

[11] V. V. Ponomarenko and D. V. Averin, Phys. Rev. Lett. 85,
4928 (2000).

[12] R. Klesse and A. Stern, Phys. Rev. B 62, 16912 (2000).
[13] B. Narozhny and A. Levchenko, arXiv:1505.07468.
[14] T. Giamarchi, Quantum Physics in One Dimension (Oxford

University, New York, 2004).
[15] D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539

(1995).
[16] V. V. Ponomarenko, Phys. Rev. B 52, R8666 (1995).
[17] I. Safi and H. J. Schulz, Phys. Rev. B 52, R17040

(1995).
[18] T. Giamarchi, Phys. Rev. B 44, 2905 (1991).
[19] D. L. Maslov, Phys. Rev. B 52, R14368 (1995).
[20] V. V. Deshpande, M. Bockrath, L. I. Glazman, and A.

Yacoby, Nature (London) 464, 209 (2010).
[21] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).
[22] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96,

106802 (2006).
[23] Y. Tanaka and N. Nagaosa, Phys. Rev. Lett. 103, 166403

(2009).
[24] T. L. Schmidt, S. Rachel, F. von Oppen, and L. I. Glazman,

Phys. Rev. Lett. 108, 156402 (2012).
[25] N. Lezmy, Y. Oreg, and M. Berkooz, Phys. Rev. B 85,

235304 (2012).
[26] M. E. Peskin and D. V. Schroeder, An Introduction to

Quantum Field Theory (Westview, Boulder, 1995).
[27] Z. Ristivojevic, P. Le Doussal, and K. J. Wiese, Phys. Rev. B

86, 054201 (2012).
[28] N. Kainaris, I. V. Gornyi, S. T. Carr, and A. D. Mirlin, Phys.

Rev. B 90, 075118 (2014).
[29] T. Li, P. Wang, H. Fu, L. Du, K. A. Schreiber, X. Mu, X. Liu,

G. Sullivan, G. A. Csathy, X. Lin, and R.-R. Du, Phys. Rev.
Lett. 115, 136804 (2015).

[30] V. A. Zyuzin and G. A. Fiete, Phys. Rev. B 82, 113305
(2010).

[31] R. Shankar, Acta Phys. Pol. B 26, 1835 (1995).
[32] W. Apel and T. M. Rice, Phys. Rev. B 26, 7063(R) (1982).
[33] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233

(1992).
[34] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.115.186404 for the
derivation of Eq. (1) using Green’s functions, bosonization
conventions, and explicit expressions for all scattering rates.

[35] G. A. Fiete, K. Le Hur, and L. Balents, Phys. Rev. B 73,
165104 (2006).

[36] J. Sirker, R. G. Pereira, and I. Affleck, Phys. Rev. B 83,
035115 (2011).

[37] N. Kainaris, A. Levchenko, I. Gornyi, and D. Polyakov
(to be published).

[38] C. Altimiras, H. Le Sueur, U. Gennser, A. Cavanna,
D. Mailly, and F. Pierre, Nat. Phys. 6, 34 (2010).

[39] S. S. Apostolov and A. Levchenko, Phys. Rev. B 89, 201303
(R) (2014).

[40] Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

PRL 115, 186404 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 OCTOBER 2015

186404-5

http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.73.045322
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevLett.107.136603
http://dx.doi.org/10.1103/PhysRevLett.107.136603
http://dx.doi.org/10.1126/science.1174736
http://dx.doi.org/10.1126/science.1174736
http://dx.doi.org/10.1088/0953-8984/11/5/004
http://dx.doi.org/10.1103/PhysRevLett.81.653
http://dx.doi.org/10.1103/PhysRevLett.81.653
http://dx.doi.org/10.1103/PhysRevLett.85.4928
http://dx.doi.org/10.1103/PhysRevLett.85.4928
http://dx.doi.org/10.1103/PhysRevB.62.16912
http://arXiv.org/abs/1505.07468
http://dx.doi.org/10.1103/PhysRevB.52.R5539
http://dx.doi.org/10.1103/PhysRevB.52.R5539
http://dx.doi.org/10.1103/PhysRevB.52.R8666
http://dx.doi.org/10.1103/PhysRevB.52.R17040
http://dx.doi.org/10.1103/PhysRevB.52.R17040
http://dx.doi.org/10.1103/PhysRevB.44.2905
http://dx.doi.org/10.1103/PhysRevB.52.R14368
http://dx.doi.org/10.1038/nature08918
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.103.166403
http://dx.doi.org/10.1103/PhysRevLett.103.166403
http://dx.doi.org/10.1103/PhysRevLett.108.156402
http://dx.doi.org/10.1103/PhysRevB.85.235304
http://dx.doi.org/10.1103/PhysRevB.85.235304
http://dx.doi.org/10.1103/PhysRevB.86.054201
http://dx.doi.org/10.1103/PhysRevB.86.054201
http://dx.doi.org/10.1103/PhysRevB.90.075118
http://dx.doi.org/10.1103/PhysRevB.90.075118
http://dx.doi.org/10.1103/PhysRevLett.115.136804
http://dx.doi.org/10.1103/PhysRevLett.115.136804
http://dx.doi.org/10.1103/PhysRevB.82.113305
http://dx.doi.org/10.1103/PhysRevB.82.113305
http://dx.doi.org/10.1103/PhysRevB.26.7063
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.186404
http://dx.doi.org/10.1103/PhysRevB.73.165104
http://dx.doi.org/10.1103/PhysRevB.73.165104
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1038/nphys1429
http://dx.doi.org/10.1103/PhysRevB.89.201303
http://dx.doi.org/10.1103/PhysRevB.89.201303
http://dx.doi.org/10.1016/S0370-1573(99)00123-4

