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We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the
presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations
consist of the particle exchange between the photon and exciton states in the polariton system without any
oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in
oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial
conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover
from Rabi-like to Josephson-like oscillations is predicted.
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Exciton polaritons are new mixed eigenmodes resulting
from strong coupling between the photon state in a
microcavity and the exciton state in a quantum well, which
inherit properties of both light and matter [1]. Polaritons
interact without dephasing due to elastic collisions in their
excitonic component, while the photon component pro-
vides them with an extremely light effective mass allowing
Bose-Einstein condensation (BEC) at high critical temper-
atures [2—4]. In recent years, a great wealth of experimental
[5-13] and theoretical [14-28] works in the field of
polariton BEC demonstrated the coherent effects analogous
to those in atomic condensates [29-32], superconductors
[33,34], or liquid helium [35-37]. At the same time, due to
their nontrivial dispersion, short lifetime, and therefore
nonequilibrium nature of condensation, polariton quantum
properties [38] differ considerably from those appearing
in BECs of atoms or in superconducting systems. The
phenomena investigated include condensation in traps
[4,7], superfluidity [11-14], vortices [5,6,17,18], solitons
[13,19,20], polariton polarization features [21-23], and
Josephson phenomena [8-10,24-28]. The latest experi-
ments to date [39,40] report the observation and fine
control of such inherent features of polariton systems as
relaxation oscillations and Rabi oscillations. There has as
well been some theoretical effort dedicated to polariton
Rabi dynamics, revealing possible ways to increase the
coherence time and proposing qubits and logic gates based
on exciton polaritons [41,42], and stochastic processes
within polariton condensates [43].

The strong coupling regime which is considered here is
defined as the Rabi splitting between the upper (UP) and
lower (LP) polariton branches at the anticrossing being
large compared to their emission linewidths [1]. The
frequency of this two-level oscillator depends on the
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Rabi frequency Qp and the detuning between energies
of bare photon and exciton states at zero wave vector. From
the point of view of the initial exciton and photon states, if
the detuning is zero, the polariton gas is a half-and-half
mixture of the two coherent components constantly per-
forming mutual transformations; hence, one may say that
Rabi oscillations are density oscillations between the
photon and exciton condensates. The picture becomes
more complicated when the photon and exciton dispersions
are shifted with respect to each other: internal oscillations
between exciton and photon components involve oscilla-
tions of the relative phase of the two macroscopic wave
functions.

In this Letter, we present a fully analytical investigation
of the internal oscillations in the two-component polariton
system and discuss possible regimes of the dynamics. We
consider an idealized polariton gas with a constant chemi-
cal potential and neglect all nonequilibrium effects asso-
ciated with particle gain and dissipation. For this model
condensate, we demonstrate that at any nonzero detuning
different types of oscillations are possible, from harmonic
and anharmonic modifications of Rabi oscillations up to the
transition to a so-called Josephson regime analogous to the
internal Josephson effect in a two-state BEC of 8’Rb atoms
[44,45]. We also address interaction-induced corrections to
our analytical solutions brought into the system by a
possible increase of the polariton density.

Within the mean field approach [15], temporal evolution
of the macroscopic wave functions of cavity photons
and quantum well excitons yy is described by the coupled
Schrodinger and Gross-Pitaevskii equations,
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with E%,X the bottoms of energy dispersions and m¢ x the
effective masses of photons and excitons. g > 0 is the
constant of exciton-exciton repulsive interaction. Particle
transfer between the subsystems is described by the
coupling term ~hQg/2, and we neglected any external
potentials and spin degree of freedom.

When the system is in the strong coupling regime, the
polariton state is an eigenstate with an equal (in the absence
of interactions) superposition of a photon and an exciton.
The positive sign chosen in Egs. (1) and (2) in front of the
coupling term 7Qy /2 imposes that the antisymmetric mode

(we —wy)/V2 with the relative phase 7z is the lower
energy level (i.e., it corresponds to the LP state), while

the symmetric mode (yc +wy)/v2 with zero relative
phase is the upper one. An initial state of the polariton
system, being some linear combination of these two modes,
results in density oscillations between the photon and
exciton subsystems. When interactions are present, the
effective lower energy level is blueshifted (while the upper
energy level appears redshifted), and the eigenmodes are no
longer the antisymmetric and the symmetric ones. Still, the
relative phase oscillations discussed below go around the
time-average values z or 0.

Considering the homogeneous case for simplicity and
assuming the momentum equal to zero, we neglect spatial
derivatives in Eqgs. (1) and (2). After the transformation
wex(t) = \/nex(t)e’Sex() we get four nonlinear dynami-
cal equations for photon and exciton populations n¢ x (1)
and phases S¢ x(1):

Oncx = Fy/ncny sin (Sc —Sx). (3)
1 /
0S¢ = —6% -5 n—XCOS (Sc = Sx), (4)
2 I’lC
0 1 I’lc
0,Sx = —€x — gny — =, |—cos (S¢ — Sx), (5)
2 ny

where we have rescaled lengths and energies in terms of
v/ h/mcQp and hQy, respectively, time as 1Qp — f, and

the wave functions as ycx/\/f/mcQr = wex.
In order to investigate the dynamics, it is convenient to

introduce new variables: relative phase S(7) = Sc(f) —
Sx(#) and population imbalance p(r) = [nc(1) — ng(1)]/n,
where n = ne(t) + ny(t) is the total number of polaritons.
Variables p and S obey the coupled equations

p=—1/1—p*sinS, (6)

- gn gn P

S=-0+%-Zp+——e
AR

7 "5 cos S. (7)

The dimensionless detuning 5 = €2 — €% and the blueshift
value gn/2 are the parameters which determine different
regimes of the system behavior. For a system with a constant
chemical potential, Eqs. (6) and (7) are Hamiltonian with
the conserved energy H(S,p) = (6 —gn/2)p + gnp*/4+
\/1—p?cos S, where the total population n is constant.
Equations (6) and (7) admit an analytical solution in terms of
quadratures:

d
t::F/ P > 5
V1= = =45 - (3-2)]

After obtaining the formal solution of the evolution
equations, it is worth noting that the interaction constant g
is of the order of 1073 (estimated from § = 0.015 meV ym?
[3]), while the unscaled n is of the order of unity (which
corresponds to ~10'° cm™2 [3]). Hence, for the closed
conservative system the blueshift parameter gn/2 is always
of the order of 1073, and the effect of interactions on
internal oscillations should be negligible. We estimate the
upper limit for realistic polariton densities as ng, ~ 10! —
10'2 cm~2 [46]. In our numerical simulations, we raised the
total density 7 up to 0.5 x 10'> cm~2. However, as shown
further, even for large densities neglecting the interactions
results in little loss of accuracy.

In the absence of interactions, the integral in (9) reveals
an explicit solution for the population imbalance:

©)

2_ 2
(1) =2 Y R o — ), (10)
w w

where h = 6p(0) + /1 —p(0)?cos S(0) = const is the
energy (per particle) defined by the detuning and the initial
conditions, @ = /1 + &% is the renormalized frequency of
internal oscillations (in scaled units, it corresponds to
QrV1+6%), and ¢ = arcsin{[h6 — p(0)&’]/V&* — h*}.
The relative phase between the photon and exciton sub-
systems is then given by (8) with the substitution of (10).
The phase-plane portrait of the conjugate variables (p, S)

is shown in Figs. 1(a)—1(c) for three detuning values. When
the detuning compensates the blueshift (6 = gn/2), for any
initial conditions the system performs finite motion along
the selected trajectory (depending on the energy). This case
is displayed in Fig. 1(a) and it corresponds to Rabi-like
oscillations. Without interactions, if the initial state is
prepared in such a way that the exciton and photon
populations are equal, i.e., p(0) = 0, the system stays in
the pure Rabi regime of density oscillations with the time
average (p) remaining zero in time and without any change
of the relative phase S = z. Any nonzero p(0), however,
will result in harmonic oscillations in both population
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FIG. 1 (color online). (a)-(c) Phase-plane portraits of the
conjugate variables p and S for different detunings. Trajectories
of different colors correspond to different values of the energy &
according to the scale given on the right. (a) § = gn/2,
(b) 6 =-0.5, (c) 6 =—1.5 (all energies are in the units of
hQp). For positive detunings, portraits flip with respect to the
vertical axis. The red dashed and black dotted lines represent
separatrices for particle densities 10! cm=2 and 0.5 x 10'? cm™2,
respectively. (d)—(f) Relative phase S = S — Sy against time, for
the trajectories of the phase-plane portrait (b) as marked. Right to
left: (f) anharmonic modification of Rabi oscillations, (e) sawtooth-
like oscillations at the separatrix, (d) the regime of running relative
phase (internal Josephson effect). For gn/2 = 0.002, analytical
expressions (10), (8) coincide with direct numerical solutions of
Egs. (6) and (7) (the solid lines). The dashed lines show the
numerical solutions for gn/2 = 0.5 x 10~!. Other physical param-
eters: me = 0.6 x 107*mg, AQ, = 5 meV, § = 0.015 meV ym?.

imbalance and relative phase with the Rabi frequency Qp
(w = 1). Allowing for interactions in this case results in the
frequency given by @ = 1+ gnh/2 [47]. The obtained
correction reveals the decrease of frequency with the
amplitude (k2 < 0), which is characteristic for nonlinear
pendulums; however, in this case the frequency does not
reduce to zero at the separatrix (h = 0), tending instead to
its nonperturbed value Qp.

Figures 1(b) and 1(c) show the phase space trajectories
for small and large negative detunings, respectively. In this
case, the two-component system can evolve in two different
dynamical regimes, depending on the initial energy. Closed
trajectories representing finite motion at low energies
belong to the regime of Rabi-like oscillations similar to
the previous case. The difference consists of the renorm-
alization of the oscillation frequency , the anharmonicity
of the relative phase oscillations [see Fig. 1(f)], and the shift
of the time-average population imbalance to a nonzero
value hé/w?. This regime of oscillations is a kind of
interplay between the modified Rabi dynamics and an
analog of the internal Josephson effect: for small-amplitude
oscillations, one may say that the shift of natural frequency
corresponds to Josephson “plasma frequency” w;p = 0Qp.

As the energy & increases at fixed detuning (or, alter-
natively, as |§| increases at fixed &), the phase oscillations

grow in amplitude up to z/2 and acquire the strongly
anharmonic sawtooth profile shown in Fig. 1(e), while the
trajectory on the phase-plane portrait approaches the sepa-

ratrix line defined by cosS = 8+/(1 —p)/(1 +p). After

crossing the separatrix, one sees a dramatic change from
Rabi-like to Josephson-like dynamics: while the density
imbalance oscillates around its new equilibrium value

hé/\/1 + &, the relative phase between the photon and
exciton condensates S(#) becomes monotonically increasing
(or decreasing, depending on the sign of §) in time, as shown
in Fig. 1(d). This regime of the running phase is analogous to
the a.c. Josephson effect in the Josephson junction [36], or to
internal Josephson-like oscillations between the populations
in a mixture of spin-up and spin-down atoms when the
external magnetic field is applied [44]. (N.B., all of the above
explanations imply that the system is that of lower polaritons.
For upper polaritons, the relative phase would oscillate
around zero instead of 7, and the decrease instead of increase
in & would bring the system closer to the separatrix and,
consequently, to the Josephson regime.)

Numerical solutions of Egs. (6) and (7) taking into
account interactions start to noticeably differ from
the analytical solutions (10) and (8) when the dimension-
less parameter gn/2 becomes of the order of 10~' and
larger [see Figs. 1(d)-1(f)]. The first-order analytical
correction to the separatrix lines appears as cosS =
[6—(1=p)gn/4]\/(1=p)/(1+p), and is shown in
Figs. 1(a)-1(c) for gn/2 =0.05 as black dotted lines.
The region of finite motion corresponding to modified
Rabi oscillations is slightly reduced by interactions,
although for higher detunings their influence weakens.

Let us address the preparation of initial states, namely
p(0) and S(0), which define the energy #. When LP and UP
branches are resonantly excited by two spectrally narrow,
phase-correlated laser pulses, the effective state created in
the system is a linear combination of the lower and upper
polariton states with controllable populations and relative
phase. For example, if the pulses arrive in phase, the initial
state will be purely photonic, and if they arrive in antiphase,
it will be purely excitonic. The multitude of intermediate
cases produce all the variety of possible initial conditions
for the considered system.

All the dynamical regimes are finally summarized in
the energy-detuning diagram displayed in Fig. 2. In the
absence of interactions, the dimensionless energy of the LP
system (energy per particle) can change in the range
—w < h <0, while for the upper polaritons 0 < & < w.
Corrected by interactions,

252
+ ﬂ) (11)

gnéd gn (18
hmin/max = :Fa):l:75+7<§; o

The critical values of & which correspond to the transition

between the “modified Rabi” and the “internal Josephson”

regimes are defined for each detuning as h==(6—gn/2)+
gn/4. The diagram h(5) is divided into four regions which
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FIG. 2 (color online). Energy-detuning diagram summarizing
the internal dynamics (in the units of 7). Minimal and maximal
energies (per particle) are given by the solid lines Ay /max =
FV'1 + 8 as marked. For LP, & < 0 and (S) = z, and for UP,
h > 0 and (S) = 0. Within these limits, the different dynamical
regimes are divided by the separatrices 7 = +6. The dashed lines
take into account interactions for the polariton density 0.5 x
10" cm™2 and § = 0.015 meV ym?>. R regions correspond to
modified Rabi oscillations. J regions correspond to Josephson-like
oscillations with the running relative phase. The red dotted line is a
guide to the eye for the corresponding data in Fig. 3.

correspond to Rabi-like and Josephson-like oscillations of
lower and upper polaritons, as shown in Fig. 2. The regime of
pure Rabi oscillations (with constant relative phase) corre-
sponds to the point § = gn/2, h = —1. (Or, for the hypo-
thetical equilibrium UP condensate, 6 = gn/2, h = +1.) It
can also be seen from this diagram that the larger the
detuning is between the modes, the less extra energy is
needed for the transition to the Josephson regime to happen.

Finally, we analyze (for vanishing interactions) how the
described internal photon-exciton dynamics influence the
phase of the photon field. Using the solutions for p(#) and
S(1) given by (10) and (8), we analytically integrate Eqs. (4)
and (5). The solutions read

€ + ¢
Scx(t) = Scx(0) = %t

(0* £ hé) tan 2L + V? — h?
w(h £ 6)

(0* £ hé) tan FVw? — h?
w(h £ 0) '

— arctan

— arctan (12)

This result highlights the fact that linear rotation of the
photon and exciton phases given by —(e% + €%)t/2 is
modulated by additional periodic terms. Figure 3 shows
the periodic parts of the phases (12) for different initial
states at fixed detuning 0.54Q%. One can clearly see that
when the polariton system is in the regions R or J (as
marked in Fig. 2) and far from the separatrices, the

additional periodic terms in both S and Sy are approx-
imately harmonic with frequency w and of small amplitude
[see Figs. 3(a) and 3(i)]. Upon approaching the separatrix
h = —6, the additional oscillations of the photon phase
become strongly anharmonic [Figs. 3(b)-3(e)], and their
amplitude grows up to x/2. Fourier spectrum of the
periodic part of Sc then consists of multiple frequencies.
Being added to the linear term, these sawtooth oscillations
result in the ladderlike behavior of the photon phase. At the
same time, the evolution of the exciton phase Sy stays
practically unchanged. On the contrary, when the energy is
close to another critical value & = 46, the exciton phase
experiences the ladderlike behavior while the photon phase
oscillations are close to harmonicity [see Figs. 3(e)-3(h)].
Experimentally, the photon phase and its evolution can be
determined through interferometry [48] with an external
reference with a well-defined phase. Even though the
photon phase alone is not enough to retrieve the whole
information about the relative phase S, it can clearly
identify the crossover between the two different dynamical
regimes while the initial conditions are being changed.

It is important to note that, when taking into account the
out-of-equilibrium nature of polaritons such as their dis-
sipation and replenishing of the system from the reservoir,
one expects that the system should show relaxation
oscillations to the stable points shown in Figs. 1(a)-1(c).
However, this appears to be the case only only when the
gain and loss rates are linear and constant. Modeling the
dynamics with nonlinearities such as gain saturation [27] or
the reservoir dynamics [24] results in new regimes of
evolution, with the detuning and the initial conditions no
longer playing a crucial role; therefore, they are subject to a
separate study.
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FIG. 3 (color online). Periodic parts of the photon and exciton
phases Sc x(f) as marked, for § = 0.5 and different initial con-
ditions according to the red dotted line in Fig. 2: (a) & = 0.95h;,,
(b) h = 0.6hy;,, () h = 0.448hy;,, (d) h = 0.44hy;,, () h =0,
) h=044h,.. (g h=0.448h,,., (h) h=0.6h,,, and
(1) h = 0.95h,.x. The background color identifies the regimes
(R or J) in agreement with Fig. 2. For negative detunings the curves
corresponding to the photon and exciton phases swap.
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In conclusion, we analytically analyzed the influence of
the photon-exciton energy detuning and repulsive inter-
actions on the internal oscillatory dynamics of the polariton
system. We demonstrated that at any nonzero detuning, the
two-component system can, depending on its energy,
oscillate around its equilibrium point or transit to the
regime of monotonically growing relative phase, which
we connect to internal Josephson effect. Interactions, on the
contrary, are shown not to play a qualitative role in the
presented physics. While the Josephson regime we describe
is very much analogous to that of conventional bosonic
Josephson junctions, the significant difference is that the
effects we report lie in the noninteracting regime of the
exciton-polariton system. When present, interactions do
not significantly modify the dynamics, in contrast to the
situation in strong-interacting atomic systems, where inter-
actions could unveil the regime of macroscopic quantum
self-trapping of populations [29]. At last, we predict that
the crossover between the two regimes of dynamics can be
experimentally observed by detecting the photon phase
evolution in photoluminescence from the cavity.
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