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It is shown numerically and analytically that when an optical pulse approaches a moving temporal
boundary across which the refractive index changes, it undergoes a temporal equivalent of reflection and
refraction of optical beams at a spatial boundary. The main difference is that the role of angles is played by
changes in the frequency. The frequency dependence of the dispersion of the material in which the pulse is
propagating plays a fundamental role in determining the frequency shifts experienced by the reflected and
refracted pulses. Our analytic expressions for these frequency shifts allow us to find the condition under
which an analog of total internal reflection may occur at the temporal boundary.
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Reflection and refraction of light at a dielectric interface
and Snell’s law describing them have been known for
centuries and are topics discussed at length in physics
textbooks [1,2]. However, their temporal analog where an
electromagnetic pulse arrives at a temporal interface has
attracted much less attention [3,4]. A temporal interface is
the boundary in time separating two regions of different
refractive indices. In this Letter, we discuss “reflection” and
“refraction” of optical pulses at such a temporal boundary
during their propagation inside a dispersive medium.
Previous works have examined temporal reflection and
refraction in nondispersive media assuming that the refrac-
tive index changes everywhere in the medium at a certain
time [3,4]. This is analogous to examining the case of
normal incidence in space. Temporal changes in the
refractive index have also been studied recently in the
context of adiabatic wavelength conversion [5–11].
From a physics perspective, a spatial boundary breaks

translational symmetry. As a result, the momentum of a
photon can change, but its energy must remain unaffected.
In the case of a static temporal boundary, the momentum of
the photon remains unchanged, but its energy must change.
For this reason, a change in the angle at a spatial interface
translates into a change in the frequency of incident light
when reflection and refraction occur at a temporal interface.
We focus on optical pulses propagating inside a dispersive
medium to reveal novel temporal and spectral features
occurring when the pulse experiences reflection and
refraction at a moving temporal boundary. In this case,
both the energy and momentum of a photon must change
simultaneously while crossing the boundary.
To simplify the following discussion, we assume that the

optical pulse is propagating inside a waveguide with the
dispersion relation βðωÞ such that neither its polarization
nor its transverse spatial shape changes during propagation.
When the pulse contains multiple optical cycles, βðωÞ can
be expanded in a Taylor series around its central frequency

ω0 as βðωÞ ¼ β0 þ β1ðω − ω0Þ þ ðβ2=2Þðω − ω0Þ2, where
we neglect all dispersion terms higher than the second order
[12]. Physically, β1 is the inverse of the group velocity, and
β2 is the group velocity dispersion (GVD). In the case of a
temporal boundary moving with the speed VB, we work in a
reference frame moving at the same speed as the boundary.
By using the coordinate transformation t ¼ T − z=VB,
where T is the time in the laboratory frame and t ¼ 0 is
set to the peak of the optical pulse at z ¼ 0, the dispersion
relation in the moving frame becomes

β0ðωÞ ¼ β0 þ Δβ1ðω − ω0Þ þ
β2
2
ðω − ω0Þ2

þ βBHðt − TBÞ; ð1Þ

where Δβ1 ¼ β1 − 1=VB and βB ¼ k0Δnðk0 ¼ ω0=cÞ is
the change in the propagation constant caused by a sudden
index change Δn for t > TB and TB is the delay between
the launching of the optical pulse and the start of the
temporal boundary’s propagation. The Heaviside function
Hðt − TBÞ takes a value of 0 for t < TB and 1 for t > TB.
We stress that by including dispersion and allowing for a
traveling boundary we have expanded on the concept of
temporal reflection and refraction given in Ref. [3].
To simplify the following discussion, we work with the

slowly varying envelope Aðz; tÞ of the pulse. The use of
Maxwell’s equations together with the dispersion relation
in Eq. (1) leads to the following time-domain equation [12]:

∂A
∂z þ Δβ1

∂A
∂t þ i

β2
2

∂2A
∂t2 ¼ iβBHðt − TBÞA : ð2Þ

We solved Eq. (2) numerically with the standard split-
step Fourier method [12], assuming a Gaussian shape of
input pulses. For the numerical simulations that follow, the
pulse width was set to T0 ¼ 1 ps, the temporal boundary
was located at TB ¼ 5 ps, and the dispersion was taken to
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be normal (β2 ¼ 0.005 ps2=m). We choseΔβ1 ¼ 0.1 ps=m
to ensure that the center of the optical pulse would cross the
boundary halfway through the total propagation length
of z ¼ 100 m.
As a first example of temporal reflection and refraction,

Fig. 1 shows (a) temporal and (b) spectral evolutions of a
Gaussian input pulse for βB ¼ 0.5 m−1, a value corre-
sponding to an index change of <10−7 at a wavelength of
1 μm. The temporal evolution in Fig. 1(a) is strikingly
analogous to that of an optical beam hitting a spatial
boundary. Although most of the pulse energy is transmitted
across the boundary, the pulse “bends” toward it and its
speed changes. The transmitted pulse is also narrower in
time, similar to how a refracted optical beam becomes
narrower in space when it is bent toward the spatial
interface. A small part of pulse energy is “reflected” and
begins traveling away from the temporal boundary. This
reflected pulse has the same temporal width, but its speed
increases considerably.
Figure 1(b) shows how temporal changes are accom-

panied by a multitude of spectral changes. In particular,
notice how the spectrum shifts and splits as the pulse
crosses the temporal boundary. Recall that the temporal
analog of an angle is the frequency. The dispersion relation
in Eq. (1) should be able to explain all spectral changes.
Figure 2 shows the dispersion curves for t < TB (dashed
blue curve) and t > TB (solid green curve). In the moving
frame, the slope of these curves gives the speed of the pulse
relative to the temporal boundary rather than the actual
group velocity. As mentioned earlier, even though β
(related to photon momentum) is not conserved, the
corresponding quantity β0 is conserved in the moving
frame. We use this conservation law to understand the
spectral shifts of refracted and reflected pulses.
To conserve β0 when transitioning from the t < TB

region to the t > TB region, each frequency component
must shift from the dashed curve in Fig. 2 to a point on the
solid curve with the same value of β0. Because the curve is

locally parabolic, the two frequencies at points (1) and (2)
on the solid curve match the initial β0. Only point (1) is a
valid solution, however, since the slope, related to the speed
of the pulse, should have the same sign for the transmitted
pulse. The entire pulse spectrum shifts toward the red side
(for βB > 0) since each frequency component of the pulse
must shift accordingly. Since the slope of the dispersion
curve at the new central frequency is different, the trans-
mitted pulse must travel at a different speed relative to
the temporal boundary. This change in the group velocity
is what leads to the apparent bending observed in
Fig. 1(a).
The reflected pulse is caused by the second point on the

dashed curve that has the same propagation constant,
marked as point (3) in Fig. 2. This point must have the
opposite slope to ensure that the pulse reflects back into the
t < TB region. We stress that the reflected pulse does not
travel backward in time or space; rather, its speed changes
such that it remains in the t < TB region. Both the reflected
pulse and temporal boundary continue to propagate
through the dispersive medium in the þz direction.
Figure 1(b) shows that the spectrum of the reflected pulse
is shifted toward the red side by about 6.37 THz. It also
shows that such a large spectral shift occurs over a
relatively small distance during which the pulse passes
through the temporal boundary.
So far, we have considered only the central frequency of

the optical pulse. However, the pulse has a finite spectral
width, and β0 must be conserved for all frequencies in the
spectrum. In Fig. 2, the shaded region shows the width of
the input pulse spectrum and the corresponding range of
propagation constants for t < TB. We can see that the
shaded region on the transmitted curve covers a much wider
spectral region than on the incident curve. This leads to the
spectral broadening and temporal narrowing of the
refracted pulse. If the sign of βB was reversed, shifting
the curve in the opposite direction, the pulse spectrum
would be compressed and the pulse would correspondingly
broaden in time.

FIG. 1 (color online). Evolution of (a) the pulse shape and
(b) the spectrum in the presence of a temporal boundary at TB ¼
5 ps (dashed white line) with βB ¼ 0.5 m−1. Time is measured in
a reference frame that is moving with the temporal boundary.

FIG. 2 (color online). Dispersion curves for t < TB (dashed
blue curve) and t > TB (solid green curve). The shaded region
shows the spectral extent of the input pulse and the corresponding
range of propagation constants for t < TB. The slope of the
dispersion curve is related to the speed of the pulse relative to the
traveling temporal boundary.
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One may ask how much the momentum changes in the
laboratory frame. It is easy to see β ¼ β0 þ ðω − ω0Þ=VB.
Since β0 remains constant, β changes by an amount
ðω − ω0Þ=VB. Clearly, a moving boundary breaks both
temporal and spatial symmetries, forcing momentum and
energy to change simultaneously. This is similar to the
behavior observed in interband photonic transitions [13].
To obtain analytic expressions for the spectral shifts

caused during temporal reflection and refraction, we
impose the requirement of momentum conservation on
β0 given in Eq. (1). To do so, we choose a specific frequency
component, for example, the center frequency ω0, and set
β0ðωÞ ¼ β0 in Eq. (2), resulting in the quadratic equation

β2
2
ðω − ω0Þ2 þ Δβ1ðω − ω0Þ þ βBHðt − TBÞ ¼ 0. ð3Þ

The last term vanishes for t < TB, and the two solutions of
the quadratic equation are

ωi ¼ ω0 and ωr ¼ ω0 − 2ðΔβ1=β2Þ: ð4Þ

These solutions represent the incident and reflected
frequencies and correspond to the points (1) and (3) in
Fig. 2. The transmitted frequency is found by noting that
the last term in Eq. (3) is finite for t > TB and has the value
βB. Solving the quadratic equation again, we obtain

ωt ¼ ωi þ
Δβ1
β2

"
−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βBβ2

ðΔβ1Þ2
s #

: ð5Þ

As discussed earlier, only a positive sign corresponds to a
physical solution shown as point (2) in Fig. 2. In the limit
Δβ1 ≫

ffiffiffiffiffiffiffiffiffiffi
βBβ2

p
, this equation can be approximated as

ωt ¼ ωi − βB
Δβ1

¼ ωi − k0Δn
Δβ1

: ð6Þ

The numerical results shown in Fig. 1 agree with these
analytic expressions derived by using the concept of
momentum conservation.
The analytical results found in this Letter provide

considerable insight into the phenomena of temporal
reflection and refraction of optical pulses. Consider first
the frequency shift of the reflected pulse: Eq. (4) indicates
that this shift depends on both the sign and magnitude of
the GVD governed by the parameter β2. In particular, it
disappears as β2 → 0. It follows from Eq. (1) that the
parabolic dispersion curve seen in Fig. 2 reduces to a
straight line in this limit, indicating that point (3) in Fig. 2
ceases to exist. Note also that the direction of frequency
shifts depends on the nature of GVD. A redshift occurring
for normal dispersion becomes a blueshift in the case of
anomalous dispersion. Another noteworthy feature is that
the frequency shift does not depend on the refractive index

change Δn across the temporal boundary. Of course, the
energy transferred to the reflected pulse depends strongly
on the magnitude of βB. These features are analogous to
what occurs at a spatial interface. Equation (4) indicates
that even larger spectral shifts are possible by reducing the
magnitude of the GVD parameter, i.e., by operating close to
the zero-dispersion wavelength of the waveguide used to
observe this phenomenon.
The refracted pulse also undergoes a spectral shift that is

analogous to a change in the direction of an optical beam
refracted at a spatial boundary. As seen in Eq. (5), this shift
depends on the magnitude of βB, in addition to the GVD
parameter β2 and the differential group delay (DGD)Δβ1 of
the pulse. In the limit Δβ1 ≫

ffiffiffiffiffiffiffiffiffiffi
βBβ2

p
, the spectral shift

becomes independent of β2. Its magnitude in all cases is
much smaller than that found for the reflected pulse. As an
example, for the case examined in Fig. 1, this shift is
0.93 THz, which is much lower than the 6.37 THz shift of
the reflected pulse.
One may ask what the temporal equivalents of the laws

of reflection and refraction are. It is difficult to find
analogous relations, since the concept of an angle, familiar
in the spatial context, is replaced with the DGD Δβ1
indicating the speed of the pulse relative to a temporal
boundary. Nevertheless, one may gain some insight if we
use the location of the extremum of the dispersion curve in
Fig. 2 as a reference frequency ωc, where the slope
dβ0=dω ¼ 0. If we shift the origin in Fig. 2 so that all
frequencies are measured from the reference frequency
ωc ¼ ω0 − Δβ1=β2 and use the notation Δω ¼ ω − ωc, the
reflected and transmitted frequencies are related to the input
frequency as

Δωr ¼ −Δωi; Δωt ¼ Δωi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2βBβ2

ðΔβ1Þ2
s

: ð7Þ

The first equation is analogous to the law of reflection.
The second one can be written in the following suggestive
form:

Δωt ¼ Δωi cos α; sin α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βBβ2
ðΔβ1Þ2

s
: ð8Þ

For small values of βB, α remains relatively small, resulting
in small frequency shifts during refraction and small
changes in the pulse speed. Frequency shifts increase with
increasing βB. At some value of parameters, α becomes
π=2, and Δωt vanishes. At that point, the transmitted
pulse’s central frequency coincides with the frequency ωc.
We must ask what happens if βB is large enough that α

loses its meaning. Since Δωt becomes undefined, no
refracted pulse can form past the temporal boundary and
the incident pulse must be totally reflected. This is the
temporal analog of the well-known phenomenon of total
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internal reflection (TIR). The condition for the temporal
TIR is found from Eq. (8) to be

ffiffiffiffiffiffiffiffiffiffiffiffi
2βBβ2

p
> Δβ1: ð9Þ

Temporal TIR can also be understood from the two
dispersion curves shown in Fig. 2. When βB is large enough
to shift the green curve in Fig. 2 completely out of the
shaded region, momentum conservation or phase matching
cannot be achieved for any spectral component of the
incident pulse. As a result, no pulse energy can enter
the t > TB region beyond the temporal boundary; however,
the momentum can still be conserved for the reflected
pulse. As a result, the pulse should be completely reflected
at the boundary. We performed numerical simulations to
confirm that this is indeed the case. Figure 3 shows the
numerical results for βB ¼ 1.4 m−1, a value that places the
transmitted curve just above the shaded region. As pre-
dicted by our simple theory, there is no transmitted pulse
and the entire pulse is reflected. The spectral evolution in
Fig. 3(b) shows how the pulse energy is transferred to the
reflected pulse over a small distance after the trailing end of
the incident pulse hits the temporal boundary. Closer
inspection reveals that a portion of the pulse extends past
the temporal boundary, forming a temporal analog to the
evanescent wave.
The existence of temporal TIR seems to contradict the

findings in Ref. [3], where a temporal analog of Snell’s law
is derived that does not allow for TIR to occur. However,
the study in Ref. [3] did not include the effects of
dispersion. Indeed, our theory shows that no reflection
occurs if β2 is set to 0.
In summary, we have shown that when an optical pulse

approaches a moving temporal boundary across which the
refractive index changes, it undergoes a temporal equiv-
alent of reflection and refraction of optical beams at a
spatial boundary. The main difference is that the role of

angle is played by changes in the frequency. The dispersion
curve of the material in which the pulse is propagating
plays a fundamental role in determining the frequency
shifts experienced by the reflected and refracted pulses. The
analytic expressions that we were able to obtain for these
two frequency shifts show that the spectral shift is relatively
small for the refracted pulse but can be quite large for the
reflected pulse. Moreover, the shifts can be either on the red
side or on the blue side of the spectrum of the incident
pulse, depending on the nature of both the group-velocity
dispersion and the refractive index change. These spectral
shifts are caused by a transfer of energy between the pulse
and the temporal boundary while the number of photons is
conserved [3]. Because our temporal boundary is induced
by an external source, this is not a closed system and energy
is not conserved in the pulse. We have also indicated the
conditions under which an optical pulse experiences the
temporal analog of TIR. Numerical results confirm all
analytical predictions based on the physical concept of
momentum conservation in the moving frame.
An experimental observation of reflection, refraction,

and TIR at a temporal boundary will be of immense
interest. Our estimates show that changes in the refractive
index across this boundary can be as small as 10−6 for
verifying our theoretical and numerical predictions. The
main issue is how to control the relative speed of the pulse
with respect to the temporal boundary. One possibility is to
use a traveling-wave electro-optic modulator in which a
microwave signal propagates at a different speed than that
of the optical pulse. A pump-probe configuration in which
cross-phase modulation would be used to produce a
moving temporal boundary may also be possible but will
require pump pulses of high energies.
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