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We numerically solve the (2þ 1)-dimensional effective kinetic theory of weak coupling QCD under
longitudinal expansion, relevant for early stages of heavy-ion collisions. We find agreement with viscous
hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing
initial conditions that are motivated by a color-glass-condensate framework, we find that for Qs ¼ 2 GeV
and αs ¼ 0.3 the system is approximately described by viscous hydrodynamics well before τ ≲ 1.0 fm=c.
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Introduction.—In the weak-coupling picture of the pre-
thermal evolution of heavy-ion collisions, the postcollision
debris that ends up in the midrapidity region undergoes
several stages that are characterized by widely different
physics and degrees of freedom. On the one hand, according
to the saturation paradigm [1], at very early times τ ∼Q−1

s ,
where Qs is the typical energy scale right after the collision,
the energy is deposited in strong color fields. These strong
fields admit a description in terms of classical Yang-Mills
theory to leading order in the ’t Hooft coupling λ ¼ 4πNcαs.
Indeed, there have been several interesting studies of classical
Yang-Mills fields under longitudinal expansion in recent
years [2–6]. On the other hand, once the system has reached a
local thermal equilibrium, or at least is approximately
isotropized [7], the matter in the midrapidity region (at
sufficiently lowpT) is described by relativistic fluid dynamics
[8,9]. There has been a sizable andvery successful programof
numerical simulations of relativistic hydrodynamics.
It is well known that classical Yang-Mills theory cannot

reach thermalization due to the Rayleigh-Jeans catastrophe,
and neither can it isotropize when exposed to rapid
longitudinal expansion, as noticed by [10]. Instead,
classical evolution drives the system further away from
equilibrium, making the system less occupied (i.e., having
weaker fields) but more anisotropic, which has also been
observed in the simulations of [4,5]. Therefore, there is a
missing link between the physics of saturated gluon fields
and fluid dynamics that needs to be bridged in order to fully
carry the predictions of saturation physics to the hydro-
dynamic regime. This gap can be filled with the system-
atically improvable framework of effective kinetic theory
(EKT), from Ref. [11].

EKT faithfully describes, to leading order in λf systems,
where the typical occupancies of gluons are not nonpertur-
bative, f ≪ 1=λ, and where they have momentum signifi-
cantly larger than the in-medium screening scale p2 > m2≡
λ
R
p fðpÞ=p. Atweak coupling, these conditions are certainly

fulfilled in thermal equilibrium and, therefore, we can
describe the system all the way to the equilibrium. While
these conditions arenot fulfilled at thevery earliest times, both
EKT and classical Yang-Mills theory give an equally valid
leading-order description for a wide range of large but
perturbative occupancies, 1 ≪ f ≪ 1=λ [12,13]. Therefore,
a possible strategy to simulate the system through all time
scales is to start the simulation with a classical Yang-Mills
simulation (forQsτ ∼ 1 and f ∼ 1=λ) and, subsequently, pass
the system to EKTat some arbitrary time τEKTQs ≫ 1. Then,
once EKT has brought the system sufficiently close to the
thermal equilibrium, both hydrodynamics and EKT should
give equivalent descriptions, and the systemcanbepassed to a
hydrodynamical simulation at some arbitrary time τhydro.
The proof of principle of such a procedurewas shown in a

series of papers [13–15] in an isotropic setting in the absence
of expansion. Here, we present the first results of numerical
simulations of the EKT in a boost-invariant ð2þ 1ÞD setting
and demonstrate the connection with both classical Yang-
Mills simulations and viscous hydrodynamics. We make a
first attempt to model the early stages of heavy-ion collision
starting from the overoccupied region all the way to the
thermal equilibrium, and we find that after time Qsτ ∼ 5.0
the time evolution of energy density is described by viscous
hydrodynamics to a better-than-10% accuracy for a realistic
coupling λ ¼ 10 corresponding to αs ≈ 0.3.
The current result, however, is incomplete in two ways.

First, there have been significant steps to describe the
melting of the strong color fields in classical statistical field
theory [2,3,6], but currently we do not have a reliable initial
state from a ð3þ 1ÞD simulation to enter into our EKT
simulation. Thereforewe initialize our systematQsτ ∼ 1with
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the energy density given by a ð2þ 1ÞD simulation [16], and
we vary the parameters of the initial condition to quantify the
ignorance of the very-early-time dynamics. Second, certain
nonperturbative chromo-Weibel instabilities [17] arising
from anisotropic screening play a parametrically leading-
order role during thewhole nonequilibriumevolution [18,19].
However, numerical simulations of classical fields [6] have
not been able to see these instabilities beyond the very early
times. This suggests that even though the instabilities con-
tribute formally at leading order, their effect is numerically
small for values of λ that are phenomenologically interesting.
Therefore, because a formally correct treatment of anisotropic
screening is rather complicated [20–23] and not a fully solved
problem, we in this Letter will treat the screening in an
isotropic way. Therefore, our results are correct to leading
order inλ for systems that are close to isotropy (late times), and
for large anisotropies our results have leading logarithmic
accuracy apart from the instabilities.
Methodology.—The EKT of [11] is defined though the

effective Boltzmann equation for the color- and spin-
averaged distribution function of gluons, and to leading
order in λ, it contains effective 2 ↔ 2 scattering and 1 ↔ 2
splitting terms,

−
dfp
dτ

¼ C1↔2½fp� þ C2↔2½fp� þ Cexp½fp�: ð1Þ

We restrict ourselves to azimuthally symmetric distribu-
tions but allow anisotropy in the z direction, so that it is
enough to specify fp ¼ fxp;p with xp ≡ ẑ · p̂. The effect of
longitudinal expansion is encapsulated in Cexp½f�ðpÞ ¼
−ðpz=τÞð∂=∂pzÞfðpÞ [24].
The 2 ↔ 2 effective scattering term reads

C2↔2½f�ð ~pÞ

¼ ð2πÞ3
4π ~p2

1

8ν

Z
dΓPSjMj2ðfpfkgp0gk0 − fp0fk0gpgkÞ

× ½δð ~p − pÞ þ δð ~p − kÞ − δð ~p − p0Þ − δð ~p − k0Þ�;
ð2Þ

where ν ¼ 2dA and gp ≡ 1þ fp. dΓPS is the integral
measure over the phase space of 2 ↔ 2 processes, singling
out the z directionZ

dΓPS ≡ 1

211π7

Z
∞

0

dq
Z

q

−q
dω

Z
∞

ðq−ωÞ=2
dp

Z
∞

ðqþωÞ=2
dk

×
Z

1

−1
dxq

Z
2π

0

dϕpqdϕkq: ð3Þ

In these coordinates the angles of incoming and outgoing
momenta read

xfpg ¼ − sin θfpgq cosϕfpgq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2q

q
þ cos θfpgqxq: ð4Þ

This relation holds for xk, xp0 , and xk0 with cosϕp0q ¼
cosϕpq, cosϕk0q ¼ cosϕkq,

cos θpq ¼
ω

q
þ t
2pq

; cos θkq ¼
ω

q
−

t
2kq

; ð5Þ

cos θp0q ¼
ω

q
−

t
2p0q

; cos θk0q ¼
ω

q
þ t
2k0q

; ð6Þ

and t≡ ω2 − q2. The effective matrix element for most
kinematics is the ordinary vacuum tree-level element

jMj2
16λ2dA

¼
�
9

4
þ ðs − tÞ2

u2
þ ðu − sÞ2

t2
þ ðt − uÞ2

s2

�
: ð7Þ

For small t ∼m2 or u ∼m2 the tree-level element has an IR
divergence that is regulated by the physics of screening. In
the formulation of [11], the screening is treated by
replacing the naive tree-level matrix element by the
retarded hard-thermal-loop resummed expression in
the soft kinematic region. The resummed propagator in
the anisotropic case, however, contains a nonintegrable
singularity, signaling the presence of an instability in the
system. Therefore, this procedure is not fully satisfactory in
the anisotropic system. In this Letter we will restrict
ourselves to isotropic screening and we use the prescription
derived in [13], replacing

q2t → tðq2 þ 2ξ20m
2Þ ð8Þ

in the denominator with ξ0 ¼ e5=6=
ffiffiffi
8

p
(and using a similar

process for u), which is accurate to leading order in the case
of isotropic distribution.
The effective 1 ↔ 2 collinear splitting term reads

C1↔2½f�ð ~pÞ ¼
ð2πÞ3
4π ~p2

1

ν

Z
∞

0

dp
Z

p=2

0

dk0½4πγðp;p0; k0Þ�

× ðfxp;pgxp;p0gxp;k0 − gxp;pfxp;p0fxp;k0 Þ
× ½δð ~p − pÞ − δð ~p − p0Þ − δð ~p − k0Þ�; ð9Þ

where p0 ¼ p − k0, and the effective splitting rate reads

γðp;p0; k0Þ ¼ p4 þ p04 þ k04

p3p03k03
dAλ

2ð2πÞ3
Z

d2h
ð2πÞ2 2h · ReF:

Again, consistently assuming only isotropic screening, the
function F is given by the solution to the linear integral
equation

2h ¼ iδEðhÞFðhÞ þ λT�
2

Z
d2q
ð2πÞ2 ½AðqÞ

× (3FðhÞ− Fðh− pqÞ− Fðh− kqÞ − Fðhþ p0qÞ)�:
ð10Þ

T� ¼ ðλ=2m2Þ R ðd3pÞ=½ð2πÞ3�fpð1þ fpÞ, and δE ¼
m2=p0 þm2=k0 −m2=pþ h2=2pk0p0. We solve this equa-
tion using an efficient numerical method introduced in [25].
For the numerical solution of the EKT, we discretize

nxp;p ¼ 4πp2=ð2πÞ3fxp;p on a 2D grid and Monte Carlo
estimate the integrals of Eqs. (3),(9). We use a
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logarithmically spaced grid for both p and xp, with at least
250 grid points in the angular direction and at least 100 in
the p direction. We vary the number of grid points to verify
that the results are insensitive to the number of grid points.
Our algorithm, the discrete-p method of [13], conserves
energy exactly and has exactly correct particle number
violation for the 1 ↔ 2 term.
Results.—We shall now apply EKT to simulate the

prethermal evolution of the expanding fireball created in
a heavy-ion collision. In a saturation framework, the initial
condition is typically described in terms of “gluon liber-
ation coefficient” c and mean transverse momentum
hpTi=Qs [26,27]. The gluon liberation coefficient is pro-
portional to the total gluon multiplicity per unit rapidity,

2dAτ
Z

d3p
ð2πÞ3 f ≡ dNinit:g

d2x⊥dy
¼ c

dAQ2
s

πλ
; ð11Þ

after the classical fields have decohered, and it can be
described in terms of quasiparticles. Lappi [16] finds, in a
JIMWLK-evolved McLerran-Venugopalan model, values
relevant for heavy-ion collisions and for the LHC that are of
roughly hpTi ≈ 1.8Qs and c ≈ 1.25, extracted at time
Qsτ ¼ 12 from a 2D classical Yang-Mills simulation. By
construction, the distribution then has hpzi ¼ 0. It has,
however, been noted [28] that certain plasma instabilities
will broaden the distribution in pz in a time scale
Qτ ∼ 1= log2ðλ−1Þ. Therefore, as a rough estimate of the
initial condition, we instead take, somewhat arbitrarily, our
initial condition at the time Qτ ¼ 1 to be

fðpz; ptÞ ¼
2

λ
Af0ðpzξ=hpTi; p⊥=hpTiÞ; ð12Þ

f0ðp̂z; p̂⊥Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂2⊥ þ p̂2
z

p e−2ðp̂2⊥þp̂2
zÞ=3; ð13Þ

choosing A such that comoving energy density τϵ ¼
hpTidN=d2xdy is fixed. We then vary ξ ¼ 4; 10 to quantify
our ignorance of the initial nonperturbative dynamics.
Figure 1 displays a set of trajectories from simulations

with varying λ and ξ ¼ 4; 10 on a plane of mean occupancy
(weighted by the energy of particles) and anisotropy
measured by the ratio of the transverse and longitudinal
pressures PT=PL. The line with λ ¼ 0 corresponds to the
classical field limit λ → 0 with fixed λf, which is obtained
in EKT by including only the highest power of f’s in
Eqs. (2),(9). The classical field theory cannot thermalize
and, indeed, it flows instead to a stationary scaling solution.
By performing classical Yang-Mills simulations, Berges
et al. have established that the scaling solution can
described by a scaling form of the distribution function [4],

fðpz; p⊥; τÞ ¼ ðQsτÞ−2=3fS(ðQsτÞ1=3pz; p⊥); ð14Þ
where fS is approximately constant as a function of time.
This behavior is demonstrated in Fig. 2, where we plot a
section of rescaled distribution function fS measured at
various times as a function for ~pz ≡ ðQsτÞ1=3pz at fixed p⊥

following Berges et al. Our results corroborate that such a
scaling solution exists at late times within the classical
approximation, and we observe that the scaling regime is
reached after a time Qsτ ∼ 15.
Moving on to the finite but small coupling λ ¼ 1; 0.5, we

see qualitative agreement with the parametric picture of
bottom-up thermalization from Ref. [10]. Three distinct
stages of evolution are visible. In the first stage, the
classical evolution drives the system to be more anisotropic
and less occupied. Once the occupancies reach f ∼ 1, there
is a qualitative change in the dynamics of the system, as
Bose enhancement is lost. This has the effect that
anisotropy remains steady, but the system continues to
become more dilute. Only in the last stage, which is
characterized by a radiational breakup of the particles at
the scale Qs, does the trajectory turn back and reach
thermal equilibrium, denoted by the black crosses in
Fig. 1. For larger values of coupling λ ¼ 5.0; 10, however,
these features become less pronounced, and the system
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FIG. 1 (color online). Trajectories of runs with different initial
conditions ξ ¼ 4 (Solid lines) and ξ ¼ 10 (dashed lines) and
varying coupling λ in a plane of mean occupancy (weighted by the
energy of particles) and anisotropy. The λ ¼ 0 line corresponds to
the classical field approximation. The violet dots refer to the times
in Fig. 2. The simulations at finite coupling reach thermal
equilibrium located at the points indicated by the black crosses.

FIG. 2 (color online). Sections of scaled distribution
fsð ~pz; p⊥Þ ¼ ðQsτÞ2=3f½ ~pzðQsτÞ−1=3; p⊥� at p⊥ ¼ 1.5Qs in the
classical approximation at vastly different times. The good
overlap of the curves indicates that system has reached the
classical scaling solution of Eq. (14). In contrast,Qsτ ¼ 5 has not
yet reached the scaling solution.
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takes a more straight trajectory towards equilibrium. It
should be noted that for these values of λ the assumption of
p ≫ m is not satisfied and large next-to-leading-order
corrections are to be expected.
Approach to hydrodynamics.—We expect that late-time

evolution should be described by relativistic hydrodynam-
ics. Under flow with translational invariance along trans-
verse directions and boost invariance, the hydrodynamical
relations read, to second order in gradients [29],

∂τϵ ¼ −
4

3

ϵ

τ
þ Φ

τ
; ð15Þ

∂τΦ ¼ −
Φ
τΠ

þ 4η

3τΠτ
−

4

3τ
Φ −

λ1
2τΠη

2
Φ2; ð16Þ

with longitudinal and transverse pressure PL ¼ 1
3
ϵ − Φ and

PT ¼ 1
3
ϵþ 1

2
Φ. The first-order hydrodynamics corresponds

to setting Φ ¼ 4η=3τ in Eq. (15). At weak coupling, the
transport coefficients η, τΠ, and λ1 are known [30,31],
leaving zero free parameters to fit, aside from the timewhen
the hydrodynamics is initialized. We initialize the first-
order hydrodynamics at the latest time we have in our
simulation and integrate Eq. (15) backwards in time. For
the second-order hydrodynamics, integrating backwards is
highly unstable; we initialize the energy density at some
arbitrary earlier time and integrate forwards in time.
In Fig. 3 we examine the validity of the hydrodynamical

expansion at small λ ¼ 1 and at realistic intermediate λ ¼
10 (αs ≈ 0.3) values of coupling. In both cases we see that
the evolution of the components of the energy-momentum
tensor asymptotes to their hydrodynamical values. In case
of λ ¼ 1, the hydrodynamical behavior is reached only
at a rather late time, Qsτ ∼ 2000. We have checked that
including second-order terms before this time does not
make the convergence significantly better; before this time,
the evolution differs qualitatively from the hydrodynamical
prediction. However, rather remarkably, for λ ¼ 10 even
first-order hydrodynamics gives a very good description of
the data all the way to very early times, Qsτ ∼ 10
(corresponding to τ ∼ 1 fm=c for Qs ¼ 2.0 GeV) where
the ratio of the pressures is still as large as PT=PL ≈ 5. In
addition, including the second-order terms significantly
improves the convergence. Indeed, we find that initializing
the second-order hydrodynamics at Qsτ ¼ 1 leads to only
10% relative error in the energy density at late times.
Discussion and conclusion.—The parametric estimate of

Baier et al. [10] for the time when the hydrodynamic
behavior sets in is Qsτ ∼ λ−13=5. This arises from equating
the age of the system (τ) with the time scale (τQ) it takes to
affect appreciably the scale Qs in a thermal bath whose
temperature depends on this time TðτÞ∼λ−1=4QsðQsτÞ−1=4,
according to conservation of comoving energy density. In
[10] it was assumed that the rate for affecting the scale Qs is
Landau-Pomeranchuk-Migdal suppressed [32], giving
τQ ∼ ðQs=TÞ1=2=λ2T. A self-consistent solution of these
equations gives the aforementioned estimate of [10]. Arnold

and Lenaghan [33] noted that as the scattering rate in thermal
plasma is τQ ∼ 1=λ2T, there can be no process that would
make the estimate faster than Qsτ ∼ λ−7=3. We have exam-
ined the validity of these scaling estimates by plotting the
difference of the energy density obtained from the simulation
and the first-order hydrodynamic estimate, and we find that
both of these estimates describe the data poorly. However, if
we assume that the approach is governed by the hydrody-
namical relaxation time τQ ∼ τΠ ∼ η=sT, we get an estimate
τ ∼ λ1=3ðη=sÞ4=3=Qs. Figure 4 displays the deviation of the
hydrodynamics as a function of rescaled time. In particular,
for intermediate couplings λ ¼ 5; 10, the overlap of the
different curves indicates correct scaling. Note that this
estimate is parametrically the same as the estimate of Arnold
and Lenaghan because, parametrically, η=s ∼ λ−2. However,
there are large corrections beyond the parametric estimate in
η=s; because of these, it is important to use the full numerical
result instead of the simpler parametric estimate. We believe,
though, in the absence of plasma instabilities, that the correct
scaling at sufficiently small λ is that of [10]. This estimate
is, however, based on a large-scale separation of
TðτhydroÞ=Qs ∼ λ2=5. Numerically this ratio is not very large,
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ν have been scaled by τ4=3 so that the ideal hydro-
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even in our simulation with small λ ¼ 1.0 where the ratio is
T=Qs ≈ 0.15 (at Qsτ ¼ 1800), as can be inferred from
Fig. 3. Therefore, we believe that the scaling predicted by
[10] sets in only at significantly smaller couplings.
In conclusion, we have shown how a far-from-equilibrium

overoccupiedconfigurationofgluons reacheshydrodynamical
flow under longitudinal expansion in a weak-coupling setting
that is systematically improvable. It has been demonstrated by
Chesler andYaffewithin anAdS=CFT framework that at large
values of ’t Hooft coupling, hydrodynamics is surprisingly
robust, even in the presence of large anisotropy [34]. Themain
deliverable of this Letter is to show that this robustness is
present also in the weak-coupling picture extrapolated to
intermediate couplings relevant for heavy-ion collisions.
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FIG. 4 (color online). Scaling of the approach to first-order
hydrodynamics at various values of λ. The dashed lines corre-
spond to ξ ¼ 4 and the solid ones to ξ ¼ 10.
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