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We study the effects of integrability-breaking perturbations on the nonequilibrium evolution of many-
particle quantum systems. We focus on a class of spinless fermion models with weak interactions. We
employ equation of motion techniques that can be viewed as generalizations of quantum Boltzmann
equations. We benchmark our method against time-dependent density matrix renormalization group
computations and find it to be very accurate as long as interactions are weak. For small integrability
breaking, we observe robust prethermalization plateaux for local observables on all accessible time scales.
Increasing the strength of the integrability-breaking term induces a “drift” away from the prethermalization
plateaux towards thermal behavior. We identify a time scale characterizing this crossover.
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In classical mechanics, integrable few-particle systems
can be understood in terms of periodic, nonergodic motion
in action-angle variables. Breaking integrability by adding
a weak perturbation induces a fascinating crossover
between integrable and chaotic motion, which is described
by the celebrated Kolmogorov-Arnold-Moser theory [1]. In
essence, classical few-particle systems with weak integra-
bility breaking retain aspects of integrable motion on
intermediate time scales. Recently, it has emerged that
similar behavior occurs in the nonequilibrium evolution of
isolated many-particle quantum systems. Starting with the
seminal work of Rigol et al. [2], it has become clear that
there is a dramatic difference between the late time
behavior of isolated integrable and nonintegrable quantum
many-particle systems prepared in initial states that are not
eigenstates of the Hamiltonian. Generic systems thermalize
[2–13], i.e., exhibit relaxation of local observables towards
a Gibbs ensemble with an effective temperature, while
integrable systems evolve towards a generalized Gibbs
ensemble [2,12–35]. Starting with the work of Moeckel and
Kehrein [36], it was then realized that models with weak
integrability-breaking perturbations exhibit transient
behavior, in which local observables relax towards non-
thermal values that retain information of the proximate
integrable theory. This has been termed prethermalization
and has been established to occur in several models
[36–46]. Crucially, it was recently observed in experiments
on ultracold bosonic atoms [47–49]. The general expect-
ation is that prethermalization is a transient effect, and at
“sufficiently late times” nonintegrable systems thermalize.
While this appears natural, there is scant evidence in
support of this scenario. The reason is that available
numerical [50] or analytical [36,41,45] methods are not
able to reach late enough times. The exception is the case of
infinitely many dimensions, where it was shown in a
particular example that a weakly nonintegrable model

thermalizes [51]. Here we address these issues in the
context of weakly interacting one-dimensional many-
particle systems. This case has the important advantage
that the accuracy of approximate methods can be bench-
marked by comparisons with powerful numerical methods
like the time-dependent density matrix renormalization
group (t-DMRG) [50]. Moreover, the existence of many
strongly interacting one-dimensional integrable systems
makes it possible to verify that the qualitative behavior
we find persists for arbitrary interaction strengths.
We focus on the weak interaction regime U ≲ J1 of the

three-parameter family of spinless fermion Hamiltonians

HðJ2;δ;UÞ¼−J1
XL
l¼1

½1þð−1Þlδ�ðc†l clþ1þH:c:Þ

−J2
XL
l¼1

½c†l clþ2þH:c:�þU
XL
l¼1

nlnlþ1: ð1Þ

Here ci and c†i are spinless fermion operators on site i,
and the hopping amplitudes describe nearest-neighbor
and next-nearest-neighbor hopping, respectively, while
0 ≤ δ < 1 is a dimerization parameter. Finally, there is a
repulsive nearest-neighbor interaction of strength U. From
here onwards, we set J1 ¼ 1 and measure all the energies in
units of J1. There are a several limits in which (1) becomes
integrable: (i)U ¼ 0 describes a free theory; (ii) δ ¼ J2 ¼ 0
corresponds to the anisotropic spin-1=2 Heisenberg chain
[52]; (iii) the low-energy degrees of freedom for J2 ¼ 0 and
δ U ≪ 1 are described by the quantum sine-Gordon model
[53]. Away from these limits, the model is nonintegrable.
Our protocol for inducing and analyzing nonequilibrium
dynamics is as follows. We prepare the system in an initial
density matrix ρ0 that is not an eigenstate ofHðJ2; δ; UÞ for
any value of U. We then compare the expectation values of
local operators for time evolution with the integrable

PRL 115, 180601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

30 OCTOBER 2015

0031-9007=15=115(18)=180601(6) 180601-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.180601
http://dx.doi.org/10.1103/PhysRevLett.115.180601
http://dx.doi.org/10.1103/PhysRevLett.115.180601
http://dx.doi.org/10.1103/PhysRevLett.115.180601


HðJ2; δ; 0Þ and (weakly) nonintegrable HðJ2; δ; UÞ,
respectively. For U ¼ 0 our model is noninteracting, and
concomitantly in the thermodynamic limit expectation
values of local operators relax to time-independent values
described by a generalized Gibbs ensemble. In the follow-
ing, we analyze how a small integrability-breaking inter-
action U > 0 changes the nonequilibrium evolution. We
stress that our protocol differs in a very important way from
the weak interaction quenches analyzed previously [51,54].
In these works, there is no dynamics at all for U ¼ 0.
Hence, quenching the interaction from zero to a finite value
simultaneously breaks integrability and induces a time
dependence into the problem. This masks the interac-
tion-induced modification of the integrable postquench
dynamics. Quantum quenches in the model (1) with
J2 ¼ 0 were previously studied in Ref. [41] by numerical
and analytical methods. On the accessible time scales,
robust prethermalization was observed, but no evidence for
eventual thermalization was found. Recently, a paper
appeared in which techniques similar to the ones we
employ here were used to analyze quantum quenches in
the case δi ¼ δf ¼ 0 [54]. No prethermalization in our
sense was observed for the aforementioned reason that
there is no dynamics without integrability breaking in this
case, but instead evolution towards a thermal steady state
was found. Given that U is small, a convenient basis for

analyzing quench dynamics is obtained by diagonalizing
the quadratic part of the Hamiltonian. This results in

HðJ2; δ; 0Þ ¼
X
α¼�

X
k>0

ϵαðkÞa†αðkÞaαðkÞ; ð2Þ

where a�ðkÞ are momentum space annihilation
operators obeying canonical anticommutation relations
faαðkÞ; a†βðqÞg ¼ δα;βδk;q and ϵαðkÞ ¼ −2J2 cosð2kÞ þ
2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ð1 − δ2Þ cos2ðkÞ

p
are single-particle dispersion

relations of the two bands of fermions. The system is
initially (at time t ¼ 0) prepared in a density matrix ρ0
and subsequently evolves according to

ρðtÞ ¼ e−iHðJ2;δf;UÞtρ0eiHðJ2;δf;UÞt: ð3Þ

Using equation of motion (EOM) techniques [51,55] analo-
gous to the ones employed in derivations of quantum
Boltzmann equations [56,57],we obtain evolution equations
for the two-point functions:

nαβðq; tÞ ¼ Tr½ρðtÞa†αðqÞaβðqÞ�: ð4Þ

The EOM can be cast in the form

_nαβðk; tÞ ¼ iϵαβðkÞnαβðk; tÞ þ 4iUeitϵαβðkÞ
X
γ1

Jγ1αðk; tÞnγ1βðk; 0Þ − Jβγ1ðk; tÞnαγ1ðk; 0Þ

−U2

Z
t

0

dt0
X
γ

X
k1;k2>0

Kγ
αβðk1; k2; k; t − t0Þnγ1γ2ðk1; t0Þnγ3γ4ðk2; t0Þ

−U2

Z
t

0

dt0
X
γ

X
k1;k2;k3>0

L
γ

αβðk1; k2; k3; k; t − t0Þnγ1γ2ðk1; t0Þnγ3γ4ðk2; t0Þnγ5γ6ðk3; t0Þ; ð5Þ

where ϵαβðkÞ ¼ ϵαðkÞ − ϵβðkÞ. Explicit expressions for the
kernels J,K, and L and details of our derivation are given in
Supplemental Material [58]. The solution of the set of
integro-differential equations (5) is numerically demand-
ing. We designed an algorithm that scales as L3 × T, where
T is the number of time steps and L the number of lattice
sites. This allows us to reach long times J1t ∼ 80 on large
systems L ∼ 320 (a similar scaling was proposed in
Ref. [54]). Given the expectation values (4), we may
readily calculate the single-particle Green’s function

Gðj; l; tÞ ¼ Tr½ρðtÞc†jcl�

¼ 1

L

X
k>0

X
α;β¼�

γ�αðk; jÞγβðk; lÞnαβðk; tÞ; ð6Þ

where the coefficients γαðk; jÞ are given in Supplemental
Material [58]. A crucial check of the accuracy of our

approach is provided by a direct comparison to previous
t-DMRG computations [41]. In Fig. 1, we present a
comparison of GðL=2; L=2þ 1Þ between EOM and
t-DMRG results for a quench where the system is prepared
in the ground state of Hð0; 0.8; 0Þ and time evolved subject
to the Hamiltonian Hð0; 0.4; 0.4Þ. We see that, even for
relatively large U ¼ 0.4, there is excellent agreement
between the two methods for all times accessible by
t-DMRG. Similar levels of agreement are found for other
GðL=2; L=2þ jÞ with j ¼ 2; 3; 4; 5. This agreement
suggests that the EOM method is very accurate for small
values of U and short and intermediate time scales. The
advantage of the EOM method is that it allows us to access
later time scales than the t-DMRG computations reported in
Ref. [41]. As long as the interaction strength U is
sufficiently small, we observe very long-lived prethermal-
ization plateaux, as is exemplified in the inset in Fig. 1.
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There, the thermal value has been computed by quantum
Monte Carlo simulations on a system with L ¼ 100
sites.
In order to investigate if and how the prethermalized

regime evolves towards thermal equilibrium, it is conven-
ient to invoke a nonzero J2. In essence, J2 allows us to tune
the crossover time scale between the two regimes. In order
to access the dynamics for a larger range of energy
densities, we consider thermal initial density matrices of
the form

ρðβ; J2; δ; UÞ ¼ e−βHðJ2;δ;UÞ

Trðe−βHðJ2;δ;UÞÞ : ð7Þ

Figures 2 and 3 show results for the time evolution of the
Green’s function for a system prepared in the initial state
(7) with density matrix ρð2; 0; 0; 0Þ and time evolved with
Hamiltonian HðJ2; 0.1; 0.4Þ. In contrast to the case J2 ¼ 0,
U ¼ 0.4, we now observe a slow drift towards a thermal
steady state. Increasing J2 enhances the drift. The
thermal values shown in Figs. 2 and 3 are obtained as
follows. The energy density is given by e ¼
Tr½ρð2; 0; 0; 0ÞHðJ2; 0.1; 0.4Þ�=L and determines the effec-
tive temperature 1=βeff of the thermal ensemble for the
postquench Hamiltonian HðJ2; 0.1; 0.4Þ through e ¼
Tr½ρðβeff ; J2; 0.1; 0.4ÞHðJ2; 0.1; 0.4Þ�=L [59]. We deter-
mine βeff by exact diagonalization of small systems up
to size L ¼ 16 and then use the same method to compute
the single-particle Green’s function in thermal equilibrium
at temperature 1=βeff . We note that Gði; j; tÞ is real for odd
separations ji − jj. For even ji − jj, the imaginary part is
nonzero but small and relaxes towards zero. We find that
the observed relaxation towards thermal values is compat-
ible with exponential decay

Gði; j; tÞ ∼ Gði; jÞth þ AijðJ2; δ; UÞe−t=τijðJ2;δ;UÞ; ð8Þ

where Gði; jÞth is the thermal Green’s function at temper-
ature 1=βeff [60]. The decay times τijðJ2; δ; UÞ are quite
sensitive to the value of J2. This can be understood by
noting that large values of J2 modify the band structure of
the noninteracting model by introducing additional cross-
ings at a fixed energy. This, in turn, generates additional
scattering channels that promote relaxation.
A natural question is whether the integral equation (5)

can be simplified in the late time regime by removing the
time integration, in analogy with standard quantum
Boltzmann equations (QBE) [56,57]. Here we are faced

FIG. 2 (color online). GðL=2; L=2 − 1; tÞ for a system with
Hamiltonian HðJ2; 0.1; 0.4Þ and sizes L ¼ 360; 320 initially
prepared in a thermal state (7) with density matrix
ρð2; 0; 0; 0Þ. The expected steady state thermal values are
indicated by dotted lines, while the black dashed lines are
exponential fits to (8).

FIG. 3 (color online). Real (inset, imaginary) part of
GðL=2; L=2þ 2; tÞ for a system with Hamiltonian
HðJ2; 0.1; 0.4Þ and sizes L ¼ 360; 320, that was initially pre-
pared in a thermal state (7) with density matrix ρð2; 0; 0; 0Þ. The
expected steady state thermal values are indicated by dotted lines,
while the black dashed lines are exponential fits to (8).

FIG. 1 (color online). GðL=2; L=2þ 1; tÞ for a quench where
the system is prepared in the ground state ofHð0; 0.8; 0Þ and time
evolved with Hð0; 0.4; 0.4Þ for a system with L ¼ 256 sites. The
EOM results (red line) are in excellent agreement with t-DMRG
computations [41] (circles). Inset: Prethermalized behavior per-
sists over a large time interval.
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with the difficulty that the structure of our EOM (5) is quite
different from the ones studied in Refs. [56,57]. However,
in the case δf ¼ 0, numerical integration of the full EOM
(5) suggests that the “off-diagonal” occupation numbers
become negligible at late times nþ−ðk; tÞ ≈ 0 and it is
possible to derive a QBE for “diagonal” occupation
numbers. The QBE for δf ¼ 0 reads

_nααðk; τÞ ¼ −
X
γ;δ

X
p;q>0

~Kγδ
ααðp; q; kÞnγγðp; τÞnδδðq; τÞ

−
X
γ;δ;ϵ

X
p;q;r>0

~Lγδϵ
αα ðp; q; r; kÞnγγðp; τÞ

× nδδðq; τÞnϵϵðr; τÞ: ð9Þ

Here τ ¼ U2t is the usual rescaled time variable, t0 ≫ 1=U
is the time at which the kinetic equation is initialized, and
the functions ~K, ~L are given in Supplemental Material [58].
The QBE agrees with the EOM for sufficiently late times
(an example is shown in Fig. 4; see the discussion below).

Because of its simpler structure, the QBE allows us to
access later times than we are able to reach with the EOM
approach. In particular, employing the QBE we conclude
that for weak interactions the relaxation times in (8) scale
as [61]

τ−1ij ðJ2; δf ¼ 0; UÞ ∝ U2: ð10Þ

This is in contrast to the U4 scaling found for interaction
quenches in the infinite-dimensional Hubbard model [51].
To establish more comprehensively that the integrability-

breaking perturbation leads to thermalization, we consider
the (Bogoliubov) mode occupation numbers nαβðq; tÞ
themselves. The mode occupation operators are not local
in space, and hence it is not a priori clear that their
expectation values should eventually thermalize; see, how-
ever, Ref. [62]. Importantly, we consider only initial states
with finite correlation lengths, which implies that Gðj; l; tÞ
are exponentially small in jj − lj as long as jj − lj ≫ J1t
[63]. This, together with the fact that Gðj; l; tÞ decay
exponentially fast in time for jj − lj ≤ J1t, suggests that
nαβðq; tÞ should relax in the regime 1 ≪ J1t ≪ L. In Fig. 4,
we present the mode occupation numbers nααðk; tÞ at
several different times for a system of size L ¼ 320
prepared in the density matrix ρð2; 0; 0.5; 0Þ and evolved
with HamiltonianHð0.5; 0; 0.4Þ. For short and intermediate
times J1t < 70, we use the full EOM, while late times are
accessible only to the QBE. The QBE is initialized at time
t0 ¼ 20 and is seen to be in good agreement with the full
EOM until the latest times accessible by the latter method.
We observe that at intermediate times both nþþðk; tÞ and
n−−ðk; tÞ slowly approach their respective thermal distri-
butions at the effective temperature 1=βeff introduced
above. The off-diagonal occupation numbers nþ−ðk; tÞ,
calculated by integrating the full EOM, approach their
thermal value zero in an oscillatory fashion. The observed
behavior of the mode occupation numbers strongly sug-
gests that the weak integrability-breaking term indeed
induces thermalization.
We note that in the QBE framework the final relaxation is

towards the noninteracting Fermi-Dirac distribution with an
effective temperature set by the kinetic energy at the time
the Boltzmann is initialized [57,64], signaling the impor-
tance of corrections to the QBE at very late times. Such
corrections, arising from higher cumulants, are important
for obtaining the power law behavior expected at very late
times (for certain observables) after quenches in non-
integrable models [65,66].
In this work, we have developed a method that allows us

to analyze the effects of a weak integrability-breaking
interaction on the time evolution of local observables after a
quantum quench. We have shown that there is a crossover
between a prethermalized regime, characterized by the
proximity of our model to an integrable theory, and a
thermal steady state. The observed drift of Gði; j; tÞ in time

FIG. 4 (color online). Occupation numbers nþþðk; tÞ and
n−−ðk; tÞ initialized in the thermal state (7) ρð2; 0; 0.5; 0Þ and
time evolved with Hð0.5; 0; 0.4Þ. The solid lines are the results of
the EOM ðL ¼ 320Þ for various times. The dotted lines are
computed by means of the QBE (L ¼ 320). The black solid line
is the thermal value found by means of second-order perturbation
theory in U.
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towards its thermal value is exponential and characterized
by a time scale proportional toU−2. The models considered
here feature a global Uð1Þ symmetry (particle number
conservation). A preliminary analysis suggests that the
scenario found here, a prethermalized regime followed by a
crossover to a thermal steady state, occurs also in the
absence of this Uð1Þ symmetry [61].
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